×

Stability and shape evolution of voids and channels due to surface misfit. (English) Zbl 1169.74331

Summary: This paper investigates the stability and shape evolution of voids and channels under the combined effects of surface misfit, surface energy and surface diffusion. A dynamic model that incorporates the competition among these energetic forces is developed. Our approach integrates a novel local semi-implicit level set method to capture interface movement and an iterative spectral method to calculate the elastic field, which allows simulating very large shape evolution such as void breakup or coalescence in a wide range of materials systems. Our study reveals the important effect of surface misfit and remarkably rich dynamics during shape evolution. It is shown that surface misfit can lead to instabilities of voids, break-up of channels and ordering of voids.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74H55 Stability of dynamical problems in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adalsteinsson, D.; Sethian, J. A.: The fast construction of extension velocities in level set methods, Journal of computational physics 148, 2-22 (1999) · Zbl 0919.65074 · doi:10.1006/jcph.1998.6090
[2] Alaca, B. E.; Sehitoglu, H.; Saif, T.: Guided self-assembly of metallic nanowires and channels, Applied physics letters 84, 4669-4671 (2004)
[3] Arzt, E.; Kraft, O.; Nix, W. D.; Sanchez, J. E.: Electromigration failure by shape change of voids in bamboo lines, Journal of applied physics 76, 1563-1571 (1994)
[4] Chen, S.; Merriman, B.; Kang, M.; Caflisch, R. E.; Ratsch, C.; Cheng, L. T.; Gyure, M.; Fedkiw, R. P.; Anderson, C.; Osher, S.: A level set method for thin film epitaxial growth, Journal of computational physics 167, 475-500 (2001) · Zbl 0993.74081 · doi:10.1006/jcph.2000.6689
[5] Chopp, D. L.; Sethian, J. A.: Motion by intrinsic Laplacian of curvature, Interfaces and free boundaries 1, 1-18 (1999) · Zbl 0938.65144 · doi:10.4171/IFB/6
[6] Colin, J.: On the surface stability of a spherical void embedded in a stressed matrix, Journal of applied mechanics-transactions of the asme 74, 8-12 (2007) · Zbl 1111.74374 · doi:10.1115/1.2165244
[7] Glaeser, A. M.: Model studies of Rayleigh instabilities via microdesigned interfaces, Interface science 9, 65-82 (2001)
[8] Jiang, G. S.; Peng, D. P.: Weighted ENO schemes for Hamilton – Jacobi equations, SIAM journal on scientific computing 21, 2126-2143 (2000) · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[9] Khenner, M.; Averbuch, A.; Israeli, M.; Nathan, M.: Numerical simulation of grain-boundary grooving by level set method, Journal of computational physics 170, 764-784 (2001) · Zbl 1112.74457 · doi:10.1006/jcph.2001.6760
[10] Li, Z. L.; Zhao, H. K.; Gao, H. J.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid, Journal of computational physics 152, 281-304 (1999) · Zbl 0956.78016 · doi:10.1006/jcph.1999.6249
[11] Lu, W.; Kim, D.: Engineering nanophase self-assembly with elastic field, Acta mater 53, 3689-3694 (2005)
[12] Lu, W.; Salac, D.: Programmable nanoscale domain patterns in multilayers, Acta materialia 53, 3253-3260 (2005)
[13] Lu, W.; Suo, Z.: Dynamics of nanoscale pattern formation of an epitaxial monolayer, Journal of the mechanics and physics of solids 49, 1937-1950 (2001) · Zbl 0998.74006 · doi:10.1016/S0022-5096(01)00023-0
[14] Lu, W.; Suo, Z.: Symmetry breaking in self-assembled monolayers on solid surfaces. I. anisotropic surface stress, Physical review B 65, 085401 (2002)
[15] Mccartney, L. N.: Cavities under stress at high-temperatures, Acta metallurgica 25, 221-230 (1977)
[16] Newcomb, S. A.; Tressler, R. E.: Slow crack-growth in sapphire fibers at 800-degrees to 1500-degrees-C, Journal of the American ceramic society 76, 2505-2512 (1993)
[17] Nichols, F. A.: Spheroidization of rod-shaped particles of finite length, Journal of materials science 11, 1077-1082 (1976)
[18] Osher, S.; Sethian, J. A.: Fronts propagating with curvature-dependent speed – algorithms based on Hamilton – Jacobi formulations, Journal of computational physics 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[19] Patra, M.; Karttunen, M.: Stencils with isotropic discretization error for differential operators, Numerical methods for partial differential equations 22, 936-953 (2006) · Zbl 1098.65108 · doi:10.1002/num.20129
[20] Peng, D. P.; Merriman, B.; Osher, S.; Zhao, H. K.; Kang, M. J.: A PDE-based fast local level set method, Journal of computational physics 155, 410-438 (1999) · Zbl 0964.76069 · doi:10.1006/jcph.1999.6345
[21] Riege, S.P., Hunt, A.W., Prybyla, J.A., 1995. Real-time TEM studies of electromigration in submicron aluminum runners. In: Materials Reliability In Microelectronics V, vol. 391, pp. 249 – 258.
[22] Salac, D.; Lu, W.: Design nanocrack patterns in heterogeneous films, Nanotechnology 17, 5185-5191 (2006)
[23] Sethian, J. A.; Smereka, P.: Level set methods for fluid interfaces, Annual review of fluid mechanics 35, 341-372 (2003) · Zbl 1041.76057 · doi:10.1146/annurev.fluid.35.101101.161105
[24] Siegel, M.; Miksis, M. J.; Voorhees, P. W.: Evolution of material voids for highly anisotropic surface energy, Journal of the mechanics and physics of solids 52, 1319-1353 (2004) · Zbl 1079.74513 · doi:10.1016/j.jmps.2003.11.003
[25] Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion, Journal of scientific computing 19, 439-456 (2003) · Zbl 1035.65098 · doi:10.1023/A:1025324613450
[26] Stahlmecke, B.; Heringdorf, F. J. M. Zu; Chelaru, L. I.; Hoegen, M. Horn-Von; Dumpich, G.; Roos, K. R.: Electromigration in self-organized single-crystalline silver nanowires, Applied physics letters, 88 (2006)
[27] Stevens, R. N.; Dutton, R.: Propagation of griffith cracks at high temperatures by mass transport processes, Materials science and engineering 8, 220-234 (1971)
[28] Suo, Z.; Hong, W.: Programmable motion and patterning of molecules on solid surfaces, Proceedings of the national Academy of sciences of the united states of America 101, 7874-7879 (2004)
[29] Tvergaard, V.; Hutchinson, J. W.: Two mechanisms of ductile fracture: void by void growth versus multiple void interaction, International journal of solids and structures 39, 3581-3597 (2002) · Zbl 1087.74625 · doi:10.1016/S0020-7683(02)00168-3
[30] Vandervorst, H. A.: Bi-cgstab – a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear-systems, SIAM journal on scientific and statistical computing 13, 631-644 (1992) · Zbl 0761.65023
[31] Wang, W. Q.; Suo, Z.: A simulation of electromigration-induced transgranular slits, Journal of applied physics 79, 2394-2403 (1996)
[32] Wang, W. Q.; Suo, Z.: Shape change of a pore in a stressed solid via surface diffusion motivated by surface and elastic energy variation, Journal of the mechanics and physics of solids 45, 709-729 (1997)
[33] Wu, C. H.: The effect of surface stress on the configurational equilibrium of voids and cracks, Journal of the mechanics and physics of solids 47, 2469-2492 (1999) · Zbl 0946.74055 · doi:10.1016/S0022-5096(99)00021-6
[34] Wu, C. H.; Hsu, J.; Chen, C. H.: The effect of surface stress on the stability of surfaces of stressed solids, Acta materialia 46, 3755-3760 (1998)
[35] Yang, F. Q.: Stress-induced surface instability of an elastic layer, Mechanics of materials 38, 111-118 (2006)
[36] Yu, H. C.; Lu, W.: Dynamics of the self-assembly of nanovoids and nanobubbles in solids, Acta materialia 53, 1799-1807 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.