×

Nonlinear fractional differential equations of Sobolev type. (English) Zbl 1302.35396

Summary: Sobolev type nonlinear equations with time fractional derivatives are considered. Using the test function method, limiting exponents for nonexistence of solutions are found.

MSC:

35R11 Fractional partial differential equations
35B33 Critical exponents in context of PDEs
35K57 Reaction-diffusion equations
35K65 Degenerate parabolic equations
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Feng, Recurrent outbreaks of childhood diseases revisited: the impact of isolation, Mathematical Biosciences 129 pp 93– (1995) · Zbl 0833.92017 · doi:10.1016/0025-5564(94)00069-C
[2] Wu, Homoclinic bifurcation in a SIQR model for childhood diseases, Journal of Differential Equations 168 pp 150– (2000) · Zbl 0969.34042 · doi:10.1006/jdeq.2000.3882
[3] Hethcote, Effects of quarantine in six endemic models for infectious diseases, Mathematical Biosciences 180 pp 141– (2002) · Zbl 1019.92030 · doi:10.1016/S0025-5564(02)00111-6
[4] Gerberry, An SEIQR model for childhood diseases, Journal of Mathematical Biology 59 pp 4– (2009) · Zbl 1231.92049 · doi:10.1007/s00285-008-0239-2
[5] Yi, Bifurcations of an SEIQR epidemic model, International Journal of Information and Systems Sciences 5 pp 296– (2009)
[6] Arino, Quarantine in a multi-species epidemic model with spatial dynamics, Mathematical Biosciences 206 pp 46– (2007) · Zbl 1124.92042 · doi:10.1016/j.mbs.2005.09.002
[7] Safi, Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Computers & Mathematics with Applications 61 pp 3044– (2011) · Zbl 1222.37102 · doi:10.1016/j.camwa.2011.03.095
[8] Safi, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Analisys - Theory Methods and Applications 12 pp 215– (2011)
[9] Dietz, The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations 11 pp 1– (1976) · Zbl 0333.92014
[10] Fine, Measles in England and Wales - I: an analysis of factors underlying seasonal patterns, International Journal of Epidemiology 11 pp 5– (1982) · doi:10.1093/ije/11.1.5
[11] Earn, Ecology and evolution of the flu, Trends in Ecology and Evolution 17 pp 334– (2002) · doi:10.1016/S0169-5347(02)02502-8
[12] London, Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates, American Journal of Epidemiology 98 pp 453– (1973)
[13] Al-Ajam, Mucormycosis in the Eastern Mediterranean: a seasonal disease, Epidemiology and Infection 134 pp 341– (2006) · doi:10.1017/S0950268805004930
[14] Bacaër, The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco, Journal of Mathematical Biology 53 pp 421– (2006) · Zbl 1098.92056 · doi:10.1007/s00285-006-0015-0
[15] Coutinho, Threshold conditions for a nonautonomous epidemic system describing the population dynamics of dengue, Bulletin of Mathematical Biology 68 pp 2263– (2006) · Zbl 1296.92226 · doi:10.1007/s11538-006-9108-6
[16] Grassly, Seasonal infectious disease epidemiology, Proceedings of the Royal Society B 273 pp 2541– (2006) · doi:10.1098/rspb.2006.3604
[17] Pereira, A generalized nonautonomous SIRVS model, Mathematical Methods in the Applied Sciences 36 pp 275– (2013) · Zbl 1257.93013 · doi:10.1002/mma.2586
[18] Zhang, Threshold conditions for a nonautonomous epidemic model with vaccination, Applicable Analysis 87 pp 181– (2008) · Zbl 1144.34032 · doi:10.1080/00036810701772196
[19] Rebelo, Persistence in seasonally forced epidemiological models, Journal of Mathematical Biology 64 pp 933– (2012) · Zbl 1303.92122 · doi:10.1007/s00285-011-0440-6
[20] Wang, Threshold dynamics for compartmental epidemic models in periodic environments, Journal of Dynamics and Differential Equations 20 pp 699– (2008) · Zbl 1157.34041 · doi:10.1007/s10884-008-9111-8
[21] Driessche, Global stability of SEIRS models in epidemiology, Canadian Applied Mathematics Quarterly 7 pp 409– (1999) · Zbl 0976.92020
[22] Hethcote, Some epidemiological model with nonlinear incidence, Journal of Mathematical Biology 29 pp 271– (1991) · Zbl 0722.92015 · doi:10.1007/BF00160539
[23] Liu, Dynamical behavior of epidemiological models with nonlinear incidence rates, Journal of Mathematical Biology 25 pp 359– (1987) · Zbl 0621.92014 · doi:10.1007/BF00277162
[24] Markus, Ann. Math. Stud 36, in: Contributions to the theory of Nonlinear Oscillations 111 pp 17– (1956)
[25] Castillo-Chavez, Mathematical Population Dynamics: Anality and Heterogeneity pp 33– (1995)
[26] Mischaikow, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Transactions of the American Mathematical Society 347 pp 1669– (1995) · Zbl 0829.34037 · doi:10.1090/S0002-9947-1995-1290727-7
[27] Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180 pp 29– (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.