CAR T cells for T-cell leukemias: insights from mathematical models. (English) Zbl 1459.92045

Summary: Immunotherapy has the potential to change the way all cancer types are treated and cured. Cancer immunotherapies use elements of the patient immune system to attack tumor cells. One of the most successful types of immunotherapy is CAR-T cells. This treatment works by extracting patient’s T-cells and adding to them an antigen receptor allowing tumor cells to be recognized and targeted. These new cells are called CAR-T cells and are re-infused back into the patient after expansion in-vitro. This approach has been successfully used to treat B-cell malignancies (B-cell leukemias and lymphomas). However, its application to the treatment of T-cell leukemias faces several problems. One of these is fratricide, since the CAR-T cells target both tumor and other CAR-T cells. This leads to nonlinear dynamical phenomena amenable to mathematical modeling. In this paper we construct a mathematical model describing the competition of CAR-T, tumor and normal T-cells and studied some basic properties of the model and its practical implications. Specifically, we found that the model reproduced the observed difficulties for in-vitro expansion of the therapeutic cells found in the laboratory. The mathematical model predicted that CAR-T cell expansion in the patient would be possible due to the initial presence of a large number of targets. We also show that, in the context of our mathematical approach, CAR-T cells could control tumor growth but not eradicate the disease.


92C50 Medical applications (general)
92C32 Pathology, pathophysiology
92-10 Mathematical modeling or simulation for problems pertaining to biology
Full Text: DOI arXiv


[1] Rafei, H.; Mehta, R. S.; Rezvani, K., Editorial: cellular therapies in cancer, Front Immunol, 10, 2788 (2019)
[2] Feins, S.; Kong, W.; Williams, E. F.; Milone, M. C.; Fraietta, J. F., An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer, Am J Hematol, 94, S1, S3-S9 (2019)
[3] Maude, S. L.; Laetsch, T. W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M. R.; Stefanski, H. E.; Myers, G. D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K. L.; Martin, P. L.; Nemecek, E. R.; Yanik, G. A.; Peters, C.; Baruchel, R.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C. H.; Levine, B. L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K. T.; Zhang, Y.; Kapildeb, S.; Lebwohl, D.; Pulsipher, M. A.; Grupp, S. A., Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia, N Engl J Med, 378, 439-448 (2018)
[4] Pan, J.; Yang, J. F.; Deng, B. P.; Zhao, X. J.; Zhang, X.; Lin, Y. H.; Wu, Y. N.; Deng, Z. L.; Zhang, Y. L.; Liu, S. H.; Wu, T.; Lu, P. H.; Lu, D. P.; Chang, A. H.; Tong, C. R., High efficacy and safety of low-dose CD \(19{}^-\) directed CAR-T cell therapy in 51 refractory or relapsed b acute lymphoblastic leukemia patients, Leukemia, 12, 2587-2593 (2017)
[5] Militou, A. N.; Papadopoulou, L. C., CAR T-cell therapy: a new era in cancer immunotherapy, Curr Pharm Biotechnol, 19, 5-18 (2018)
[6] Locke, F. L.; Ghobadi, A.; Jacobson, C. A.; Miklos, D. B.; Lekakis, L. J.; Oluwole, O. O., Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial, Lancet Oncol, 20, 31-42 (2019)
[7] Schuster, S. J.; Bishop, M. R.; Tam, C. S.; Waller, E. K.; Borchmann, P.; McGuirk, J. P., Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma, N Engl J Med, 380, 45-56 (2019)
[8] D’Agostino, M.; Raje, N., Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better?, Leukemia, 34, 21-34 (2020)
[9] Sadelain, M., CD19 CAR T cells, Cell, 171, 1471 (2017)
[10] Yong, C. S.M.; Dardalhon, V.; Devaud, C.; Taylor, N.; Darcy, P. K.; Kershaw, M. H., CAR T-cell therapy of solid tumors, Immunol Cell Biol, 95, 4, 356-363 (2017)
[11] Martinez, M.; Moon, E. K., CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment, Front Immunol, 10, 128 (2019)
[12] Sahoo, P.; Yang, X.; Abler, D.; Maestrini, D.; Adhikarla, V.; Frankhouser, D.; Cho, H.; Machuca, V.; Wang, D.; Barish, M.; Gutova, M.; Branciamore, S.; Brown, C. E.; Rockne, R. C., Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data, J R Soc Interface, 17, 20190734 (2020)
[13] Baar, M.; Coquille, L.; Mayer, H.; Holzel, M.; Rogava, M.; Tuting, T.; Bovier, A., A stochastic model for immunotherapy of cancer, Sci Rep, 6, 24169 (2016)
[14] Kimmel G.J., Locke F.L., Altrock P.M.. Evolutionary dynamics of CAR T cell therapy. 2019. BioRxiv 717074.
[15] Rodrigues B.J., Carvalho Barros L.R., Almeida R.C.. Three-compartment model of CAR T-cell immunotherapy. 2019. BioRxiv 779793.
[16] Mostolizadeh, R.; Afsharnezhad, Z.; Marciniak-Czochra, A., Mathematical model of chimeric anti-gene receptor (CAR) T cell therapy with presence of cytokine, numerical algebra, Control Optim, 8, 1, 63-80 (2018) · Zbl 1406.92318
[17] León-Triana, O.; Soukaina, S.; Calvo, G. F.; Belmonte-Beitia, J.; Chulián, S.; Martínez-Rubio, A., T cell therapy in B-cell acute lymphoblastic leukaemia: Insights from mathematical models, Comm Nonlin Sci Numer Simul, 94, 105570 (2021) · Zbl 1461.92043
[18] Alcantara, M.; Tesio, M.; June, C. H.; Houot, R., CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells, Leukemia, 11, 2307-2315 (2019)
[19] Breman, E.; Demoulin, B.; Agaugu, S.; Maun, S.; Michaux, A.; Springuel, L., Overcoming target driven fratricide for T cell therapy, Front Immunol, 9, 2940 (2018)
[20] Ghorashian, S.; Kramer, A. M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R., Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR, Nat Med, 25, 1408-1414 (2019)
[21] Fleischer, L. C.; Spencer, H. T.; Raikar, S. S., Targeting T cell malignancies using CAR- based immunotherapy: challenges and potential solutions, J Hematol Oncol, 12, 141 (2019)
[22] Snchez-Martnez, D.; Baroni, M. L.; Gutierrez-Agera, F.; Roca-Ho, H.; Blanch-Lombarte, O.; Gonzlez-Garca, S.; Torrebadell, M.; Junca, J.; Ramrez-Orellana, M.; Velasco-Hernndez, T.; Bueno, C.; Fuster, J. L.; Prado, J. G.; Calvo, J.; Uzan, B.; Cools, J.; Camos, M.; Pflumio, F.; Toribio, M. L.; Menndez, P., Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia, Blood, 133, 21, 2291-2304 (2019)
[23] Ruella, M.; Xu, J.; Barrett, D. M.; Fraietta, J. A.; Reich, T. J.; Ambrose, D. E., Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell, Nat Med, 24, 1499-1503 (2018)
[24] Davenport, A. J.; Jenkins, M. R.; Ritchie, D. S.; Prince, H. M.; Trapani, J. A.; Kershaw, M. H.; Darcy, P. K.; Neeson, P. J., CAR-T cells are serial killers, Oncoimmunology, 4, 12, e1053684 (2015)
[25] Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M., Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity, ProcNatl Acad Sci, 115, 9, E2068-E2076 (2018)
[26] Tough, D. F.; Sprent, J., Life span of naive and memory T cells, Stem Cells, 13, 3, 242-249 (1995)
[27] Benmebarek, M.; Karches, C. H.; Cadilha, B. L.; Lesch, S.; Endres, S.; Kobold, S., Killing mechanisms of chimeric antigen receptor (CAR) T cells, Int J Mol Sci, 20, 6, 1283 (2019)
[28] Skipper, H. E.; Perr, S., Kinetics of normal and leukemic leukocyte populations and relevance to chemotherapy, Cancer Res, 30, 1883-1897 (1970)
[29] Staber, P. B.; Herling, M.; Bellido, M.; Jacobsen, E. D.; Davids, M. S.; Kadia, T. M.; Shustov, A.; Tournilhac, O.; Bachy, E.; Zaja, F.; Porkka, K.; Hoermann, G.; Simonitsch-Klupp, I.; Haferlach, C.; Kubicek, S.; Mayerhoefer, M. E.; Hopfinger, G.; Jaeger, U.; Dearden, C., Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia, Blood, 134, 14, 1132-1143 (2019)
[30] Bains I., Antia R., Callard R., Yates A.J.. Quantifying the development of the peripheral naive CD4+ T-cell pool in humans. 2009. Blood, 113, 22, 5480-5487
[31] Hay, K. A.; Turtle, C. J., Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B cell malignancies, Drugs, 77, 3, 237-245 (2017)
[32] Hirayama, A. V.; Gauthier, J.; Hay, K. A.; Voutsinas, J. M.; Wu, Q.; Gooley, T.; Li, D.; Cherian, S.; Chen, X.; Pender, B. S.; Hawkins, R. M.; Vakil, A.; Steinmetz, R. N.; Acharya, U. H.; Cassaday, R. D.; Chapuis, A. G.; Dhawale, T. M.; Hendrie, P. C.; Kiem, H. P.; Lynch, R. C.; Ramos, J.; Shadman, M.; Till, B. G.; Riddell, S. R.; Maloney, D. G.; Turtle, C. J., The response to lymphodepletion impacts PFS in patients with aggressive non-hodgkin lymphoma treated with CD19 CAR T cells, Blood, 133, 17, 1876-1887 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.