×

Probability logic of finitely additive beliefs. (English) Zbl 1204.03027

This paper investigates a probability logic \(\Sigma_+\) which resembles certain modal logics. The main focus is on questions related to completeness and compactness.
The author enriches propositional logic by adding probabilistic operators \(L_r\) with \(r\in[0,1]\cup \mathbb Q\) to the language. The intended interpretation of \(L_r\varphi\) is that the agents’ belief in the event \(\varphi\) is at least \(r.\) As \(\varphi\) is a sentence of this logic, the \(L_r\)-operator possibly occurs multiple times in \(\varphi.\)
Next, the notions of finitely additive probability model and finitely additive type space are defined, for which a satisfaction relation \(\models\) is introduced.
The author obtains the probability logic \(\Sigma_+\) as the smallest set of formulae that is closed under a set of rules.
To prove the truth lemma and Lindenbaum property for \(\Sigma_+\) an auxiliary deducibility relation, \(\Vdash_{\Sigma_+}\) is defined. Using this relation, strong completeness of \(\Sigma_+\) is proved.
The brief third section shows how the above results are used to obtain that the axiom system \(\Sigma_H:=\Sigma_+\cup\{L_r\varphi\rightarrow L_1L_r\varphi\}\cup\{\neg L_r\varphi\rightarrow L_1\neg L_r\varphi\}\) is sound and complete with respect to Harsanyi type spaces.
Section 4 investigates universal type spaces. The author proves that any canonical finitely additive type space is not universal in the class of finitely additive type spaces.
The last section contains a non-compactness theorem for \(\Sigma_+\) and the class of finitely additive type spaces. Hence establishing that probability indices cause the failure of compactness in probability logic.

MSC:

03B48 Probability and inductive logic
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aliprantis, C., & Border, K. (2006). Infinite dimension analysis. In A Hitchhiker’s guide (3rd edn). New York: Springer. · Zbl 1156.46001
[2] Aumann R. (1999a) Interactive epistemology: Knowledge. International Journal of Game Theory 28: 263–300 · Zbl 0961.91040 · doi:10.1007/s001820050111
[3] Aumann R. (1999b) Interactive epistemology: Probability. International Journal of Game Theory 28: 301–314 · Zbl 0961.91039 · doi:10.1007/s001820050112
[4] Aumann, R., & Heifetz, A. (2002). Incomplete information. In: R. Aumann & S. Hart (Eds.), Handbook of game theory (pp. 1665–1686). Handbook Series in Economics.
[5] Blackburn P., de Rijke M., Venema Y. et al (2000) Modal logic. In: Abramsky S. (eds) Cambridge tracts in theoretical computer science (vol. 53). Oxford University Press, Oxford · Zbl 0988.03006
[6] de Finetti B. (1975) Theory of probability. Wiley, New York · Zbl 0328.60003
[7] Fagin R., Halpern J. (1994) Reasoning about knowledge and probability. Journal of ACM 41: 340–367 · Zbl 0806.68098 · doi:10.1145/174652.174658
[8] Fagin R., Megiddo N., Halpern J. (1990) A logic for reasoning about probabilities. Information and Computation 87: 78–128 · Zbl 0811.03014 · doi:10.1016/0890-5401(90)90060-U
[9] Fishburn C. (1986) The axioms of subjective probability. Statistical Science 1: 335–345 · Zbl 0604.60004 · doi:10.1214/ss/1177013611
[10] Gerla G. (1994) Inferences in probability logic. Artificial Intelligence 70(1–2): 33–52 · Zbl 0821.03014 · doi:10.1016/0004-3702(94)90102-3
[11] Gerla G. (2001) Fuzzy logic: Mathematical tools for approximate reasoning. In: Wojcicki R. (eds) Trends in logic. Kluwer, Studia Logica Library, Amsterdam, pp 1–1 · Zbl 0976.03026
[12] Goldblatt, R. (1993). Mathematics of modality (vol. 43). CSLI Lecture Notes. Stanford: CSLI. · Zbl 0942.03516
[13] Goldblatt, R. (2008). Deduction systems for coalgebras over measurable spaces. Journal of Logic and Computation (to appear). · Zbl 1220.03054
[14] Halpern J., Fagin R., Moses Y., Vardi V. (1995) Reasonign about knowledge. MIT Press, MA · Zbl 0839.68095
[15] Harsanyi J. (1967) Games with incomplete information played by bayesian players, part one. Management Science 14: 159–182 · Zbl 0207.51102 · doi:10.1287/mnsc.14.3.159
[16] Heifetz A., Mongin P. (2001) Probability logic for type spaces. Games and Economic Behavior 35: 31–53 · Zbl 0978.03017 · doi:10.1006/game.1999.0788
[17] Heifetz A., Samet D. (1998) Knowledge space with an arbitrary high rank. Games and Economic Behavior 22: 260–273 · Zbl 0895.90201 · doi:10.1006/game.1997.0591
[18] Heifetz A., Samet D. (1998) Topology-free typology of beliefs. Journal of Economic Theory 82: 324–341 · Zbl 0921.90156 · doi:10.1006/jeth.1998.2435
[19] Heifetz A., Samet D. (1999) Coherent beliefs are not always types. Journal of Mathematics and Economics 32: 475–488 · Zbl 1099.91507 · doi:10.1016/S0304-4068(98)00066-4
[20] Horn A., Tarski A. (1948) Measures in boolean algebras. Transactions of AMS 64: 467–497 · Zbl 0035.03001 · doi:10.1090/S0002-9947-1948-0028922-8
[21] Howson C., De finetti (2008) countable addivity, consistency and coherence. British Journal for the Philosophy of Science 59(3): 1–23 · Zbl 1142.03309 · doi:10.1093/bjps/axm042
[22] Los J., Marszewski E. (1949) Extensions of measures. Fundamenta Mathematicae 36: 267–276
[23] Machina M., Schmeidler D. (1992) A more robust definition of subjective probability. Econometrica 60(4): 745–780 · Zbl 0763.90012 · doi:10.2307/2951565
[24] Meier M. (2006) Finitely additive beliefs and universal type spaces. Annals of Probability 34: 386–422 · Zbl 1161.91009 · doi:10.1214/009117905000000576
[25] Meier, M. (2009). An infinitary probability logic for type spaces. Israel Journal of Mathematics (to appear). · Zbl 1276.91039
[26] Moss L., Viglizzo I. (2006) Final coalgebras for functors on measurable spaces. Information and Computation 204: 610–636 · Zbl 1103.68084 · doi:10.1016/j.ic.2005.04.006
[27] Ognjanovic Z., Raskovic M. (1999) Some probability logics with new types of probability operators. Journal of Logic and Computation 9(2): 181–195 · Zbl 0941.03022 · doi:10.1093/logcom/9.2.181
[28] Ognjanovic Z., Raskovic M. (2000) Some first-order probability logics. Theoretical Computer Science 247(1–2): 191–212 · Zbl 0954.03024 · doi:10.1016/S0304-3975(98)00341-7
[29] Ognjanovic Z., Perovic A., Raskovic M. (2008a) An axiomatization of qualitative probability. Acta Polytechnica Hungarica 5(1): 105–110
[30] Ognjanovic Z., Perovic A., Raskovic M. (2008b) Logics with the qualitative probability operator. Logic Journal of the IGPL 16(2): 105–120 · Zbl 1138.03024 · doi:10.1093/jigpal/jzm031
[31] Samet D. (2000) Quantified beliefs and believed quantities. Journal of Economic Theory 95: 169–185 · Zbl 0967.91079 · doi:10.1006/jeth.2000.2670
[32] Savage L. (1972) The foundations of statistics. Dover, New York · Zbl 0276.62006
[33] Williamson J. (1999) Countably additivity and subjective probability. British Journal for the Philosophy of Science 50(3): 401–416 · Zbl 0969.60005 · doi:10.1093/bjps/50.3.401
[34] Williamson, J. (2002). Probability logic. In: D. Gabbay, R. Johnson, H. Jurgen Ohlbach, & J. Woods (Eds.), Handbook of the logic of inference and argument: The turn towards the practical (pp. 397–424). Studies in Logic and Practical Reasoning. · Zbl 1038.03521
[35] Zhou, C. (2007). Complete Deductive Systems for Probability Logic with Application in Harsanyi Type spaces. PhD thesis, Indiana University, Bloomington.
[36] Zhou, C. (2009). A complete deductive system for probability logic. Journal of Logic and Computation (to appear). · Zbl 1191.03018
[37] Ziemer, W. (2004). Modern real analysis. Online lecture notes.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.