×

Quantitative classification of vortical flows based on topological features using graph matching. (English) Zbl 1472.76036

Summary: Vortical flow patterns generated by swimming animals or flow separation (e.g. behind bluff objects such as cylinders) provide important insight to global flow behaviour such as fluid dynamic drag or propulsive performance. The present work introduces a new method for quantitatively comparing and classifying flow fields using a novel graph-theoretic concept, called a weighted Gabriel graph, that employs critical points of the velocity vector field, which identify key flow features such as vortices, as graph vertices. The edges (connections between vertices) and edge weights of the weighted Gabriel graph encode local geometric structure. The resulting graph exhibits robustness to minor changes in the flow fields. Dissimilarity between flow fields is quantified by finding the best match (minimum difference) in weights of matched graph edges under relevant constraints on the properties of the edge vertices, and flows are classified using hierarchical clustering based on computed dissimilarity. Application of this approach to a set of artificially generated, periodic vortical flows demonstrates high classification accuracy, even for large perturbations, and insensitivity to scale variations and number of periods in the periodic flow pattern. The generality of the approach allows for comparison of flows generated by very different means (e.g. different animal species).

MSC:

76D17 Viscous vortex flows
05C22 Signed and weighted graphs
76D25 Wakes and jets
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Williamson CHK, Roshko A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355-381. (doi:10.1016/S0889-9746(88)90058-8) · doi:10.1016/S0889-9746(88)90058-8
[2] Becker S, Lienhart H, Durst F. 2002 Flow around three-dimensional obstacles in boundary layers. J. Wind Eng. Ind. Aerodyn. 90, 265-279. (doi:10.1016/S0167-6105(01)00209-4) · doi:10.1016/S0167-6105(01)00209-4
[3] Gostelow JP, Platzer MF, Carscallen WE. 2005 On vortex formation in the wake flows of transonic turbine blades and oscillating airfoils. J. Turbomach. 128, 528-535. (doi:10.1115/1.2184354) · doi:10.1115/1.2184354
[4] Depardon S, Lasserre JJ, Brizzi LE, Borée J. 2006 Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall PIV data. Meas. Sci. Technol. 17, 1659-1669. (doi:10.1088/0957-0233/17/7/004) · doi:10.1088/0957-0233/17/7/004
[5] Ellington CP, van den Berg C, Willmott AP, Thomas ALR. 1996 Leading-edge vortices in insect flight. Nature 384, 626-630. (doi:10.1038/384626a0) · doi:10.1038/384626a0
[6] Lauder GV, Drucker EG. 2002 Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol. Sci. 17, 235-240. (doi:10.1152/nips.01398.2002) · doi:10.1152/nips.01398.2002
[7] Spedding GR, Rosén M, Hedenström A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206, 2313-2344. (doi:10.1242/jeb.00423) · doi:10.1242/jeb.00423
[8] Tytell ED, Lauder GV. 2004 The hydrodynamics of eel swimming, I. Wake structure. J. Exp. Biol. 207, 1825-1841. (doi:10.1242/jeb.00968) · doi:10.1242/jeb.00968
[9] Bartol IK, Krueger PS, Stewart WJ, Thompson JT. 2009 Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet ‘modes’ and their implications for propulsive efficiency. J. Exp. Biol. 212, 1889-1903. (doi:10.1242/jeb.027771) · doi:10.1242/jeb.027771
[10] Stewart WJ, Bartol IK, Krueger PS. 2010 Hydrodynamic fin function of brief squid, Lolliguncula brevis. J. Exp. Biol. 213, 2009-2024. (doi:10.1242/jeb.039057) · doi:10.1242/jeb.039057
[11] Flammang BE, Lauder GV, Troolin DR, Tyson S. 2011 Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proc. R. Soc. B 278, 3670-3678. (doi:10.1098/rspb.2011.0489) · doi:10.1098/rspb.2011.0489
[12] Bartol IK, Krueger PS, Jastrebsky RA, Thompson JT. 2016 Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first. J. Exp. Biol. 219, 392-403. (doi:10.1242/jeb.129254) · doi:10.1242/jeb.129254
[13] Perry AE, Chong MS. 1994 Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357-374. (doi:10.1007/BF00849110) · Zbl 0822.76047 · doi:10.1007/BF00849110
[14] Tobak M, Peak DJ. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14, 61-85. (doi:10.1146/annurev.fl.14.010182.000425) · Zbl 0512.76043 · doi:10.1146/annurev.fl.14.010182.000425
[15] Eiter T, Mannila H. 1997 Distance measures for point sets and their computation. Acta Informatica 34, 109-133. (doi:10.1007/s002360050075) · Zbl 0865.51011 · doi:10.1007/s002360050075
[16] Lavin Y, Batra R, Hesselink L. 1998 Feature comparisons of vector fields using Earth mover’s distance. In Proc. of IEEE Visualizations ’98, Research Triangle Park, NC, 18-23 October, pp. 103-109. IEEE.
[17] Theisel H, Weinkauf T. 2002 Vector field metrics based on distance measures of first order critical points. J. WSCG 10, 121-128.
[18] Batra R, Kling K, Hesselink L. 2000 Topology based methods for quantitative comparisons of vector fields. Proc. SPIE, Vis. Data Explor. Anal. VII 3960, 268-279. (doi:10.1117/12.378904) · doi:10.1117/12.378904
[19] Depardon S, Lasserre JJ, Brizzi LE, Borée J. 2007 Automated topology classification method for instantaneous velocity fields. Exp. Fluids 42, 697-710. (doi:10.1007/s00348-007-0277-3) · doi:10.1007/s00348-007-0277-3
[20] Ahuja RK, Magnanti TL, Orlin JB. 1993 Network flows: theory, algorithms, and applications. Upper Saddle River, NJ: Prentice-Hall, Inc. · Zbl 1201.90001
[21] Nair AG, Taira K. 2015 Network-theoretic approach to sparsified discrete vortex dynamics. J. Fluid Mech. 768, 549-571. (doi:10.1017/jfm.2015.97) · doi:10.1017/jfm.2015.97
[22] Taira K, Nair AG, Brunton SL. 2016 Network structure of two-dimensional decaying isotropic turbulence. J. Fluid Mech. 795, R2. (doi:10.1017/jfm.2016.235) · Zbl 1359.76124 · doi:10.1017/jfm.2016.235
[23] Scarsoglio S, Iacobello G, Ridolfi L. 2016 Complex networks unveiling spatial patterns in turbulence. Int. J. Bifurcation Chaos 26, 1650223. (doi:10.1142/S0218127416502230) · Zbl 1354.68230 · doi:10.1142/S0218127416502230
[24] Iacobello G, Scarsoglio S, Kuerten JGM, Ridolfi L. 2018 Spatial characterization of turbulent channel flow via complex networks. Phys. Rev. E 98, 013107. (doi:10.1103/PhysRevE.98.013107) · doi:10.1103/PhysRevE.98.013107
[25] Jaromczyk JW, Toussaint GT. 1992 Relative neighborhood graphs and their relatives. Proc. IEEE 80, 1502-1517. (doi:10.1109/5.163414) · doi:10.1109/5.163414
[26] Gabriel KR, Sokal RR. 1969 A new statistical approach to geographic variation analysis. Syst. Zool. 18, 259-278. (doi:10.2307/2412323) · doi:10.2307/2412323
[27] Matula DW, Sokal RR. 1980 Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geograph. Anal. 12, 205-222. (doi:10.1111/gean.1980.12.issue-3) · doi:10.1111/gean.1980.12.issue-3
[28] Su TH, Chang RC. 1990 The k-Gabriel graphs and their applications. In Algorithms (eds T Asano, T Ibaraki, H Imai, T Nishizeki). Lecture Notes in Computer Science, vol. 450. Berlin, Germany: Springer.
[29] Bose P, Collette S, Hurtado F, Korman M, Langerman S, Sacristán V, Saumell M. 2013 Some properties of k-Delaunay and k-Gabriel graphs. Comput. Geom. Theory Appl. 46, 131-139. (doi:10.1016/j.comgeo.2012.04.006) · Zbl 1254.05042 · doi:10.1016/j.comgeo.2012.04.006
[30] Rand WM. 1971 Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850. (doi:10.1080/01621459.1971.10482356) · doi:10.1080/01621459.1971.10482356
[31] Hubert L, Arabie P. 1985 Comparing partitions. J. Classif. 2, 193-218. (doi:10.1007/BF01908075) · Zbl 0587.62128 · doi:10.1007/BF01908075
[32] R Core Team. 2018 R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[33] Fourer R, Gay DM, Kernighan B. 2002 AMPL: A mathematical programming language, 2 edn. Cenage Learning. Independence, KY, USA.
[34] IBM ILOG. 2017 CPLEX. See https://www.ibm.com/analytics/cplex-optimizer.
[35] Garey MR, Johnson DS. 1979 Computers and intractability: a guide to the theory of NP-completeness. New York, NY: W. H. Freeman & Co. · Zbl 0411.68039
[36] Theisel H, Seidel HP. 2003 Feature flow fields. In Proc. Symp. on Data Visualization 2003 (VisSym ’03), Grenoble, France, 26-28 May, pp. 141-148. Aire-la-Ville, Switzerland: Eurographics Association.
[37] Weinkauf T, Theisel H, Van Gelder A, Pang A. 2011 Stable feature flow fields. IEEE Trans. Vis. Comput. Graph 17, 770-780. (doi:10.1109/TVCG.2010.93) · doi:10.1109/TVCG.2010.93
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.