×

On Hua’s fundamental theorem of the geometry of rectangular matrices. (English) Zbl 1003.15013

Two \(m\times n\)-matrices \(A\) and \(B\) over a field \(F\) are called adjacent if, and only if, \(\text{rank} A-B=1\). A well-known result due to L. K. Hua [Trans. Am. Math. Soc. 61, 229-255 (1947; Zbl 0037.39205)] says that a bijection \(\varphi:F^{m\times n}\to F^{m\times n}\) (\(m,n\geq 2\)) which preserves adjacency in both directions is of the form \(X\mapsto P\cdot f(X)\cdot Q+R\) or, but only when \(m=n\), of the form \(X\mapsto P\cdot f(X)^T\cdot Q+R\) , where \(f\) is an automorphism of \(F\), \(P\in\text{GL}(m,F)\), \(Q\in\text{GL}(n,F)\), and \(R\in F^{m\times n}\). The author aims at weakening the original assumptions of Hua.
On the one hand, it is shown that a mapping \(\varphi:F^{m\times n}\to F^{m\times n}\) that preserves adjacency in both directions is injective. On the other hand, it is shown that for real matrices the assumptions in Hua’s theorem can be weakened considerably: it is sufficient to assume that \(\varphi:F^{m\times n}\to F^{m\times n}\) is just a mapping with the following property: \(A\) adjacent \(B\) \(\Leftrightarrow\) \(\varphi(A)\) adjacent \(\varphi(B)\). Over the complex numbers a similar result is not possible, since there are non-surjective monomorphisms of the field of complex numbers.

MSC:

15B33 Matrices over special rings (quaternions, finite fields, etc.)
51A25 Algebraization in linear incidence geometry
05C12 Distance in graphs

Citations:

Zbl 0037.39205
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baribeau, L.; Ransford, T., Non-linear spectrum-preserving maps, Bull. London Math. Soc., 32, 8-14 (2000) · Zbl 1022.15010
[2] Bhatia, R.; Šemrl, P.; Sourour, A. R., Maps on matrices that preserve the spectral radius distance, Studia Math., 134, 99-110 (1999) · Zbl 0927.15006
[3] Carter, D. S.; Vogt, A., Collinearity-preserving functions between Desarguesian planes, Mem. Amer. Math. Soc., 27, 1-98 (1980) · Zbl 0444.51004
[4] Dixon, J., Rigid embedding of simple groups in the general linear group, Canad. J. Math., 29, 384-391 (1977) · Zbl 0332.20016
[5] Hua, L. K., Geometries of matrices I. Generalizations of von Staudt’s theorem, Trans. Amer. Math. Soc., 57, 441-481 (1945)
[6] Hua, L. K., Geometries of matrices \(I_1\). Arithmetical construction, Trans. Amer. Math. Soc., 57, 482-490 (1945) · Zbl 0063.02922
[7] Hua, L. K., Geometries of symmetric matrices over the real field I, Dokl. Akad. Nauk SSSR, 53, 95-97 (1946) · Zbl 0063.02925
[8] Hua, L. K., Goemetries of symmetric matrices over the real field II, Dokl. Akad. Nauk SSSR, 53, 195-196 (1946)
[9] Hua, L. K., Geometries of matrices II. Study of involutions in the geometry of symmetric matrices, Trans. Amer. Math. Soc., 61, 193-228 (1947) · Zbl 0037.00701
[10] Hua, L. K., Geometries of matrices III. Fundamental theorems in the geometries of symmetric matrices, Trans. Amer. Math. Soc., 61, 229-255 (1947) · Zbl 0037.39205
[11] Hua, L. K., Goemetry of symmetric matrices over any field with characteristic other than two, Ann. Math., 50, 8-31 (1949) · Zbl 0034.15701
[12] Hua, L. K., A theorem on matrices over a field and its applications, Acta Math. Sinica, 1, 109-163 (1951)
[13] Kestelman, H., Automorphisms in the field of complex numbers, Proc. London Math. Soc. (2), 53, 1-12 (1951) · Zbl 0042.39304
[14] Li, C. K.; Tsing, N. K., Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl., 162-164, 217-235 (1992) · Zbl 0762.15016
[15] Petek, T., Mappings preserving spectrum and commutativity on Hermitian matrices, Linear Algebra Appl., 290, 167-191 (1999) · Zbl 0930.15027
[16] Petek, T.; Šemrl, P., Characterization of Jordan homomorphisms on \(M_n\) using preserving properties, Linear Algebra Appl., 269, 33-46 (1998) · Zbl 0891.15001
[17] T. Petek, and, P. Šemrl, Adjacency preserving maps on matrices and operators, Proc. Roy. Soc. Edinburgh Sect. A, to appear.; T. Petek, and, P. Šemrl, Adjacency preserving maps on matrices and operators, Proc. Roy. Soc. Edinburgh Sect. A, to appear. · Zbl 1006.15015
[18] Pierce, S., A survey of linear preserver problems, Linear and Multilinear Algebra, 33, 1-192 (1992)
[19] Wan, Z., Geometry of Matrices (1996), World Scientific: World Scientific Singapore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.