×

Discrete Morse theory for manifolds with boundary. (English) Zbl 1288.57022

Discrete Morse theory was originally developed by Robin Forman, and it has proven to be an extremely powerful tool in diverse areas of mathematics. In the paper under review, the author develops a version of discrete Morse theory for manifolds with boundary. The paper begins with an excellent introduction giving a survey of (classical smooth) Morse theory, analogous results in discrete Morse theory, and open questions. This sets up for the “dual” approach given in the paper. Let \(f\) be a discrete Morse function on a \(d\)-pseudo-manifold \(M\). Then \(f\) is said to be boundary critical if all the boundary faces of \(M\) are critical cells of \(f\). A manifold without boundary is said to be endo-collapsible if it admits a discrete Morse function with exactly \(2\) critical cells. A manifold with boundary is called endo-collapsible if it admits a discrete Morse function whose critical cells are all of the boundary cells plus a single interior cell.
There are several important theorems that the author is able to show.
Theorem: All endo-collapsible manifolds with boundary are balls.
This is an analogous result to Whitehead’s result that “Every collapsible PL \(d\)-manifold is a ball” but without the PL condition (it is unknown whether the PL condition is necessary in Whitehead’s Theorem). The author provides a nice result about the barycentric subdivision of a constructible ball.
Theorem: All constructible manifolds with boundary are endo-collapsible balls. Barycentric subdivision of simplicial constructible balls are collapsible.
Also, endo-collapsibility of a pseudo-manifold \(M\) can be characterized in terms of the endo-collapsibility of the cone over \(M\). The author proves that the cone over \(M\) is endo-collapsible if and only if \(M\) is endo-collapsible.
Chapter 2 gives a lengthy but helpful refresher on background results and terminology including polytopal complexes, PL manifolds, CW complexes, and discrete Morse theory.
Chapter 3 begins by showing by showing that results analogous to classical discrete Morse theory hold in the boundary-critical case e.g. the relative Morse inequalities for a boundary-critical discrete Morse function. The author proves that endo-collapsible manifolds are either spheres or balls, obtaining in the process an alternative proof of Forman’s theorem that if \(f\) is a discrete Morse function with \(2\) critical cells on a \(d\)-manifold \(M\) without boundary, then \(M\) is a \(d\)-sphere. There are also results in this chapter concerning the (good) behavior of boundary-critical discrete Morse functions under patching and barycentric subdivision.
Chapter 4 studies applications of the author’s theory to classical combinatorial topology; for example, to knotted \(3\)-manifolds of the kind studies by Goodrick and Bing.

MSC:

57Q10 Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc.
57Q15 Triangulating manifolds
05A16 Asymptotic enumeration
52B22 Shellability for polytopes and polyhedra
57M25 Knots and links in the \(3\)-sphere (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Jan Ambjørn, Bergfinnur Durhuus, and Thordur Jonsson, Quantum geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997. A statistical field theory approach. · Zbl 0993.82500
[2] Fredric D. Ancel and Craig R. Guilbault, Compact contractible \?-manifolds have arc spines (\?\ge 5), Pacific J. Math. 168 (1995), no. 1, 1 – 10. · Zbl 0820.57014
[3] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543 (2002), 147 – 168. · Zbl 1055.13012 · doi:10.1515/crll.2002.012
[4] B. BENEDETTI, On Locally Constructible Manifolds. PhD thesis, TU Berlin (2010). Available online at http://opus.kobv.de/tuberlin/volltexte/2010/2519/. · Zbl 1214.57020
[5] Bruno Benedetti, Collapses, products and LC manifolds, J. Combin. Theory Ser. A 118 (2011), no. 2, 586 – 590. · Zbl 1235.57016 · doi:10.1016/j.jcta.2010.05.001
[6] B. BENEDETTI, Discrete Morse theory is at least as perfect as Morse theory. Preprint (2010) at arxiv:1010.0548.
[7] B. BENEDETTI AND F. H. LUTZ, The dunce hat and a minimal non-extendably collapsible 3-ball. To appear in Electronic Geometry Models (2011). Preprint at arxiv:0912.3723.
[8] Bruno Benedetti and Günter M. Ziegler, On locally constructible spheres and balls, Acta Math. 206 (2011), no. 2, 205 – 243. · Zbl 1237.57025 · doi:10.1007/s11511-011-0062-2
[9] R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on modern mathematics, Vol. II, Wiley, New York, 1964, pp. 93 – 128.
[10] A. Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819 – 1872. · Zbl 0851.52016
[11] R. BOTT, Morse Theory indomitable. In Raoul Bott: Collected Papers, R. D. MacPherson, ed., vol. 4: Mathematics related to Physics. Birkhäuser (1995), 465-480.
[12] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197 – 205 (1972). · Zbl 0251.52013 · doi:10.7146/math.scand.a-11045
[13] S. BUONCRISTIANO, Fragments of geometric topology from the Sixties. Vol. 6 of Geometry & Topology Monographs, Coventry (2003). · Zbl 1066.57001
[14] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83 – 112. · Zbl 0424.57007 · doi:10.2307/1971245
[15] Manoj K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math. 217 (2000), no. 1-3, 101 – 113 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). · Zbl 1008.52011 · doi:10.1016/S0012-365X(99)00258-7
[16] D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra, Proc. Cambridge Philos. Soc. 63 (1967), 353 – 357. D. R. J. Chillingworth, Correction: ”Collapsing three-dimensional convex polyhedra” [Proc. Cambridge Philos. Soc. 63 (1967), 353 – 357; MR 35 #995], Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 2, 307 – 310. · Zbl 0451.57008 · doi:10.1017/S0305004100057601
[17] Matias Courdurier, On stars and links of shellable polytopal complexes, J. Combin. Theory Ser. A 113 (2006), no. 4, 692 – 697. · Zbl 1091.52008 · doi:10.1016/j.jcta.2005.05.001
[18] Xun Dong, Alexander duality for projections of polytopes, Topology 41 (2002), no. 6, 1109 – 1121. · Zbl 1018.52008 · doi:10.1016/S0040-9383(01)00037-4
[19] Bergfinnur Durhuus and Thórdur Jónsson, Remarks on the entropy of 3-manifolds, Nuclear Phys. B 445 (1995), no. 1, 182 – 192. · Zbl 0990.57500 · doi:10.1016/0550-3213(95)00207-9
[20] R. D. EDWARDS, The double suspension of a certain homology 3-sphere is \( S^5\). Notices AMS 22 (1975), 334.
[21] Felix Effenberger and Wolfgang Kühnel, Hamiltonian submanifolds of regular polytopes, Discrete Comput. Geom. 43 (2010), no. 2, 242 – 262. · Zbl 1189.52015 · doi:10.1007/s00454-009-9151-9
[22] Richard Ehrenborg and Masahiro Hachimori, Non-constructible complexes and the bridge index, European J. Combin. 22 (2001), no. 4, 475 – 489. · Zbl 0995.52004 · doi:10.1006/eujc.2000.0477
[23] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. · Zbl 0819.13001
[24] Alexander Engström, Discrete Morse functions from Fourier transforms, Experiment. Math. 18 (2009), no. 1, 45 – 53. · Zbl 1177.57022
[25] Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90 – 145. · Zbl 0896.57023 · doi:10.1006/aima.1997.1650
[26] Robin Forman, Witten-Morse theory for cell complexes, Topology 37 (1998), no. 5, 945 – 979. · Zbl 0929.57020 · doi:10.1016/S0040-9383(97)00071-2
[27] Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357 – 453. · Zbl 0528.57011
[28] R. FURCH, Zur Grundlegung der kombinatorischen Topologie. Abh. Math. Sem. Univ. Hamburg 3 (1924), 69-88. · JFM 49.0399.01
[29] Richard E. Goodrick, Non-simplicially collapsible triangulations of \?\(^{n}\), Proc. Cambridge Philos. Soc. 64 (1968), 31 – 36. · Zbl 0179.52602
[30] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. · Zbl 0639.14012
[31] Martin A. Guest, Morse theory in the 1990s, Invitations to geometry and topology, Oxf. Grad. Texts Math., vol. 7, Oxford Univ. Press, Oxford, 2002, pp. 146 – 207. · Zbl 0996.54503
[32] M. HACHIMORI, Combinatorics of constructible complexes. Ph.D. thesis, Tokyo University (2000). · Zbl 0938.68882
[33] Masahiro Hachimori, Decompositions of two-dimensional simplicial complexes, Discrete Math. 308 (2008), no. 11, 2307 – 2312. · Zbl 1137.52006 · doi:10.1016/j.disc.2006.10.023
[34] Masahiro Hachimori and Koya Shimokawa, Tangle sum and constructible spheres, J. Knot Theory Ramifications 13 (2004), no. 3, 373 – 383. · Zbl 1083.57008 · doi:10.1142/S0218216504003214
[35] Masahiro Hachimori and Günter M. Ziegler, Decompositons of simplicial balls and spheres with knots consisting of few edges, Math. Z. 235 (2000), no. 1, 159 – 171. · Zbl 0965.57022 · doi:10.1007/s002090000129
[36] Mary-Elizabeth Hamstrom and R. P. Jerrard, Collapsing a triangulation of a ”knotted” cell, Proc. Amer. Math. Soc. 21 (1969), 327 – 331. · Zbl 0176.22202
[37] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[38] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318 – 337. · Zbl 0233.14010 · doi:10.2307/1970791
[39] Gregor Jerše and Neža Mramor Kosta, Ascending and descending regions of a discrete Morse function, Comput. Geom. 42 (2009), no. 6-7, 639 – 651. · Zbl 1169.65018 · doi:10.1016/j.comgeo.2008.11.001
[40] Michael Jöllenbeck and Volkmar Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer. Math. Soc. 197 (2009), no. 923, vi+74. · Zbl 1160.13007 · doi:10.1090/memo/0923
[41] Michael Joswig and Marc E. Pfetsch, Computing optimal Morse matchings, SIAM J. Discrete Math. 20 (2006), no. 1, 11 – 25. · Zbl 1190.90162 · doi:10.1137/S0895480104445885
[42] Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. · Zbl 0861.57001
[43] Dmitry Kozlov, Combinatorial algebraic topology, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008. · Zbl 1157.57300
[44] Thomas Lewiner, Hélio Lopes, and Geovan Tavares, Optimal discrete Morse functions for 2-manifolds, Comput. Geom. 26 (2003), no. 3, 221 – 233. · Zbl 1031.65031 · doi:10.1016/S0925-7721(03)00014-2
[45] W. B. R. Lickorish, An unsplittable triangulation, Michigan Math. J. 18 (1971), 203 – 204. · Zbl 0216.20103
[46] W. B. R. Lickorish, Unshellable triangulations of spheres, European J. Combin. 12 (1991), no. 6, 527 – 530. · Zbl 0746.57007 · doi:10.1016/S0195-6698(13)80103-5
[47] W. B. R. Lickorish and J. M. Martin, Triangulations of the 3-ball with knotted spanning 1-simplexes and collapsible \?th derived subdivisions, Trans. Amer. Math. Soc. 137 (1969), 451 – 458. · Zbl 0182.26302
[48] F. H. LUTZ, A vertex-minimal non-shellable simplicial 3-ball with 9 vertices and 18 facets. In http://www.eg-models.de, Electronic Geometry Model No. 2003.05.004. · Zbl 1246.52017
[49] Frank H. Lutz, Small examples of nonconstructible simplicial balls and spheres, SIAM J. Discrete Math. 18 (2004), no. 1, 103 – 109. · Zbl 1077.57018 · doi:10.1137/S0895480103430521
[50] Barry Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221 – 228. · Zbl 0127.13604 · doi:10.2307/1970288
[51] Ezra Miller and Victor Reiner, Reciprocal domains and Cohen-Macaulay \?-complexes in \Bbb R^{\?}, Electron. J. Combin. 11 (2004/06), no. 2, Note 1, 9. · Zbl 1084.52515
[52] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. · Zbl 1090.13001
[53] John Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399 – 405. · Zbl 0072.18402 · doi:10.2307/1969983
[54] John Milnor, Fifty years ago: topology of manifolds in the 50’s and 60’s, Low dimensional topology, IAS/Park City Math. Ser., vol. 15, Amer. Math. Soc., Providence, RI, 2009, pp. 9 – 20. · Zbl 1195.57003
[55] Marston Morse, Relations between the critical points of a real function of \? independent variables, Trans. Amer. Math. Soc. 27 (1925), no. 3, 345 – 396. · JFM 51.0451.01
[56] James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. · Zbl 0673.55001
[57] M. NEWMAN, A property of \( 2\)-dimensional elements. Proc. Koninkl. Nederl. Akad. Wet. 29 (1926), 1401-1405. · JFM 52.0569.03
[58] M. H. A. Newman, Boundaries of ULC sets in Euclidean \?-space, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 193 – 196. · Zbl 0036.12801
[59] U. Pachner, Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten, Abh. Math. Sem. Univ. Hamburg 57 (1987), 69 – 86 (German). · Zbl 0651.52007 · doi:10.1007/BF02941601
[60] G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications. Preprint (2002) at arxiv:math/0211159. · Zbl 1130.53001
[61] G. PERELMAN, Ricci flow with surgery on three-manifolds. Preprint (2003) at arxiv:math/0303109. · Zbl 1130.53002
[62] T. M. Price, Compact, contractible \?-manifolds and their boundaries, Michigan Math. J. 18 (1971), 331 – 341. · Zbl 0205.27903
[63] J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576 – 594. · Zbl 0457.52005 · doi:10.1287/moor.5.4.576
[64] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. · Zbl 0254.57010
[65] Mary Ellen Rudin, An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. 64 (1958), 90 – 91. · Zbl 0082.37602
[66] V. V. Sharko, Functions on manifolds, Translations of Mathematical Monographs, vol. 131, American Mathematical Society, Providence, RI, 1993. Algebraic and topological aspects; Translated from the Russian by V. V. Minachin [V. V. Minakhin]. · Zbl 0791.57001
[67] John Shareshian, Discrete Morse theory for complexes of 2-connected graphs, Topology 40 (2001), no. 4, 681 – 701. · Zbl 0980.57005 · doi:10.1016/S0040-9383(99)00076-2
[68] Emil Sköldberg, Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006), no. 1, 115 – 129. · Zbl 1150.16008
[69] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387 – 399. · Zbl 0109.41103 · doi:10.2307/2372978
[70] Dean E. Smith, On the Cohen-Macaulay property in commutative algebra and simplicial topology, Pacific J. Math. 141 (1990), no. 1, 165 – 196. · Zbl 0686.13008
[71] C. T. C. Wall, Geometrical connectivity. I, J. London Math. Soc. (2) 3 (1971), 597 – 604. , https://doi.org/10.1112/jlms/s2-3.4.597 C. T. C. Wall, Geometrical connectivity. II. Dimension 3, J. London Math. Soc. (2) 3 (1971), 605 – 608. · doi:10.1112/jlms/s2-3.4.605
[72] Volkmar Welker, Constructions preserving evasiveness and collapsibility, Discrete Math. 207 (1999), no. 1-3, 243 – 255. · Zbl 0938.06003 · doi:10.1016/S0012-365X(99)00049-7
[73] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. · Zbl 0406.55001
[74] J. H. C. WHITEHEAD, Simplicial spaces, nuclei and \( m\)-groups, Proc. Lond. Math. Soc. 45 (1939), 243-327. · Zbl 0022.40702
[75] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341 – 358. · Zbl 0116.40801 · doi:10.1016/0040-9383(63)90014-4
[76] E. C. ZEEMAN, Seminar on Combinatorial Topology. Institut des Hautes Études Scientifiques, Paris, 1966. Fascicule I (Exposés I - V).
[77] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501 – 526. · Zbl 0122.17901 · doi:10.2307/1970538
[78] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.