×

Curved \(A_{\infty }\)-algebras and gauge theory. (English) Zbl 1425.70043

Summary: We propose a general notion of algebraic gauge theory obtained via extracting the main properties of classical gauge theory. Building on a recent work on transferring curved \(A_{\infty }\)-structures we show that, under certain technical conditions, algebraic gauge theories can be transferred along chain contractions. Specializing to the case of the contraction from differential forms to cochains, we obtain a simplicial gauge theory on the matrix-valued simplicial cochains of a triangulated manifold. In particular, one obtains discrete notions of connection, curvature, gauge transformation and gauge invariant action.

MSC:

70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
16E45 Differential graded algebras and applications (associative algebraic aspects)
18G55 Nonabelian homotopical algebra (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Connes, A.: Non-commutative Geometry. Academic Press, Boston (1994) · Zbl 0592.46056
[2] Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5, 174-243 (1995) · Zbl 0960.46048 · doi:10.1007/BF01895667
[3] Dubois-Violette, M.: Lectures on graded differential algebras and noncommutative geometry. In: Noncommutative Differential Geometry and Its Applications to Physics (Shonan, 1999), pp. 245-306. Kluwer Academic, Dordrecht (2001) · Zbl 1038.58004
[4] Dupont, J.L.: Curvature and Characteristic Classes. Lecture Notes in Mathematics, vol. 640. Springer, New York (1978) · Zbl 0373.57009
[5] Getzler, E.: Lie theory for nilpotent \[L_{\infty }\] L∞-algebras. Ann. Math. 270(1), 271-301 (2009) · Zbl 1246.17025 · doi:10.4007/annals.2009.170.271
[6] Getzler, E., Jones, J.D.\[S.: A_{\infty }\] A∞-algebras and the cyclic bar complex. Ill. J. Math. 34, 256-283 (1990) · Zbl 0701.55009
[7] Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245-280 (1991) · Zbl 0723.57030 · doi:10.1007/BF02571387
[8] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry, pp. 203-263. World Sci. Publishing, River Edge (2000) · Zbl 1072.14046
[9] Lambe, L., Stasheff, J.: Applications of perturbation theory to iterated fibrations. Manuscr. Math. 58, 363-376 (1987) · Zbl 0632.55011 · doi:10.1007/BF01165893
[10] Nicolas, P.: The bar derived category of a curved dg algebra. J. Pure Appl. Algebra 212, 2633-2659 (2008) · Zbl 1152.18008 · doi:10.1016/j.jpaa.2008.04.001
[11] Nikolov, N.M., Zahariev, S.: Curved \[A_{\infty }\] A∞-algebras and Chern classes. Pure Appl. Math. Q. 9(2), 333-370 (2013) · Zbl 1295.57031 · doi:10.4310/PAMQ.2013.v9.n2.a3
[12] Phillips, A., Stone, D.: The computation of characteristic classes of lattice gauge fields. Commun. Math. Phys. 131(2), 255-282 (1990) · Zbl 0718.55012 · doi:10.1007/BF02161414
[13] Positsel’skii, L.: Nonhomogeneous quadratic duality and curvature. Funkt. Anal. Prilozhen. 27, 57-66 (1993) · Zbl 0826.16041 · doi:10.1007/BF01768670
[14] Stasheff, J.: Homotopy associativity of H-spaces. II. Trans. Am. Math. Soc. 108, 293-312 (1963) · Zbl 0114.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.