×

Weighted Sobolev spaces on curves. (English) Zbl 1019.46026

The aim of this paper is to define weighted Sobolev spaces \(W^{k,p}(\gamma,\mu)\) on a simple curve that has a locally absolutely continuous parametrization, \(\gamma\colon I\to\mathbb{C}\). The authors need to introduce the classes \(\text{AC}^{(k)}(\gamma), {\text{AC}}^{(k)}_{\text{loc}}(\gamma)\) of \(k\) times differentiable functions on \(\gamma\) in order to define the derivatives along \(\gamma\). If \(1\leq p\leq\infty\), for every arc \([z_1,z_2]\subset\gamma\), by means of a Muckenhoupt-type weighted norm inequality they also define the class \(B_p([z_1,z_2])\) of weights \(w\), which contains the classical \(A_p\) class when \(\gamma\) assumes values in \({\mathbb R}\). Next, if \(\mu=(\mu_0,\mu_1,\dots,\mu_k)\) is a given vector measure on \(\gamma\), they denote by \(\Omega_j\) the set of those points in \(\gamma\) with a neighborhood \(V\subset\gamma\) such that \(w_j\in B_p(V)\).
Then they introduce the completion of \(\mu\) and the set \(\Omega^{(j)}\) of \(j\)-regular points \(z_0\in\gamma\), \(1\leq j\leq k\). These sets are used in the definition of a \(p\)-admissible vector measure \(\mu\), and the corresponding weighted Sobolev space \(W^{k,p}(\gamma,\mu)\) contains all the equivalence classes of functions \(f\colon\gamma\to\mathbb{C}\) such that \(f^{(j)}\in{\text{AC}}^{(1)}_{\text{loc}}(\Omega^{(j)})\) for \(0\leq j<k\) and \(\|f^{(j)}\|_{L^p(\gamma,\mu_j)}<\infty\) for \(0\leq j\leq k\), with respect to the seminorm \(\|f\|_{W^{k,p}(\gamma,\mu)}:=\sum^k_{j=0}\|f^{(j)}\|_{L^p(\gamma,\mu_j)}\).
With these definitions, the authors find conditions under which these new spaces are complete, they study the density of the polynomials and the problem of the boundedness of the multiplication operator \(f\mapsto zf\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B35 Function spaces arising in harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Branquinho, A.; Foulquié, A.; Marcellán, F., Asymptotic behavior of Sobolev type orthogonal polynomials on a rectifiable Jordan curve or arc, Constr. Approx., 18, 161-182 (2002) · Zbl 0991.42018
[2] Cachafeiro, A.; Marcellán, F., Orthogonal polynomials of Sobolev type on the unit circle, J. Approx. Theory, 78, 127-146 (1994) · Zbl 0822.42013
[3] Everitt, W. N.; Littlejohn, L. L., The density of polynomials in a weighted Sobolev space, Rend. Mat., 10, 835-852 (1990) · Zbl 0765.41008
[4] Everitt, W. N.; Littlejohn, L. L.; Williams, S. C., Orthogonal Polynomials in Weighted Sobolev Spaces (1989), Marcel Dekker: Marcel Dekker New York, p. 53-72 · Zbl 0676.33005
[5] Everitt, W. N.; Littlejohn, L. L.; Williams, S. C., Orthogonal polynomials and approximation in Sobolev spaces, J. Comput. Appl. Math., 48, 69-90 (1993) · Zbl 0796.42020
[6] Foulquié, A.; Marcellán, F.; Pan, K., Asymptotic behavior of Sobolev-type orthogonal polynomials on the unit circle, J. Approx. Theory, 100, 345-363 (1999) · Zbl 0945.33008
[7] Gamelin, T. W., Uniform Algebras (1969), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0213.40401
[8] Garcı&#x0301;a-Cuerva, J.; Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics (1985), North-Holland: North-Holland Amsterdam
[9] Heinonen, J.; Kilpeläinen, T.; Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations (1993), Oxford Science Publ.Clarendon Press: Oxford Science Publ.Clarendon Press Oxford · Zbl 0780.31001
[10] Kilpeläinen, T., Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn., 19, 95-113 (1994) · Zbl 0801.46037
[12] Kufner, A.; Opic, B., How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin., 25, 537-554 (1984) · Zbl 0557.46025
[13] Kufner, A.; Sändig, A. M., Some Applications of Weighted Sobolev Spaces (1987), Teubner: Teubner Stuttgart · Zbl 0662.46034
[14] López Lagomasino, G.; Pijeira, H., Zero location and \(n\)-th root asymptotics of Sobolev orthogonal polynomials, J. Approx. Theory, 99, 30-43 (1999) · Zbl 0949.42020
[15] López Lagomasino, G.; Pijeira, H.; Pérez, I., Sobolev orthogonal polynomials in the complex plane, J. Comput. Appl. Math., 127, 219-230 (2001) · Zbl 0973.42015
[16] Martı&#x0301;nez-Finkelshtein, A., Bernstein-Szegö’s theorem for Sobolev orthogonal polynomials, Constr. Approx., 16, 73-84 (2000) · Zbl 0951.42014
[17] Maz’ja, V. G., Sobolev Spaces (1985), Springer-Verlag: Springer-Verlag Berlin
[18] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207-226 (1972) · Zbl 0236.26016
[19] Muckenhoupt, B., Hardy’s inequality with weights, Studia Math., 44, 31-38 (1972) · Zbl 0236.26015
[21] Rodrı&#x0301;guez, J. M.; Alvarez, V.; Romera, E.; Pestana, D., Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials II, Approx. Theory Appl., 18, 1-32 (2002)
[22] Rodrı&#x0301;guez, J. M., The multiplication operator in Sobolev spaces with respect to measures, J. Approx. Theory, 109, 157-197 (2001)
[23] Rodrı&#x0301;guez, J. M., Weierstrass’ Theorem in weighted Sobolev spaces, J. Approx. Theory, 108, 119-160 (2001)
[25] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1978), North-Holland Mathematical Library: North-Holland Mathematical Library North-Holland · Zbl 0387.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.