×

Asymptotics of Sobolev orthogonal polynomials for Hermite (1,1)-coherent pairs. (English) Zbl 1398.33006

The purpose of this article is to study asympotics of monic polynomials (SMOP), orthogonal with respect to a certain Sobolev inner product. There are many references in this paper and the paper starts with a historical introduction on generalized Laguerre functions and Hermite functions [Y. Liu et al., “Hermite-Sobolev orthogonal functions and spectral methods for second and fourth order problems on unbounded domains”, preprint]. However, in the paper, mostly Hermite polynomials are used. Several crucial formulas contain this Szegö Hermite polynomial in the denominator. In order to obtain an algebraic relation between the sequences \(\{Q_n(x)\}\) and \(\{\tilde{Q}_n(x)\}\), several lemmas are proved.
Reviewer’s remark: It is not an easy task to determine the validity of the given formulas at the beginning of the paper, since references are not accompanied by page numbers, mathematical definitions are not given and it is not clear if the authors know that there are two types of Hermite polynomials, one of them monic (i.e., the probabilistic Hermite polynomials). A few examples: Formula (7) for so-called monic Hermite polynomials is false. The reference to formula (8) is false. Formula (10) is not identical with 22.15.3 and 22.15.4 in reference [1].
Formula (9) is false since it is not identical with [14](23) and the variable \(b\) is not defined. A ‘shadow’ to formula (23) is found in [p. 299](23). Accordingly, the variable \(b\) appears again in formulas (21) and (23).
The statement between formulas (13) and (14) on so-called monic Laguerre polynomials is false.
It would be advisable to tell what \(b\) and \(H_n(x)\) are in the similar formulas (48) and (51). Probably the factor \(\sqrt{\frac n2}\) in formulas (9), (23), (48) and (51) could have been avoided by choosing monic Hermite polynomials instead, which clearly shows the advantage of Appell polynomials. It is also not clear why the polynomials in (42) are monic.
Finally, Mehler-Heine type formulas for scaled polynomials are found. Conclusion: it is not possible to ‘mend’ this article unless Appell polynomials are used and/or proper polynomial definitions are given.

MSC:

33C47 Other special orthogonal polynomials and functions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, (1972), Dover New York) · Zbl 0543.33001
[2] Alfaro, M.; Moreno-Balcázar, J. J.; Pérez, T. E.; Piñar, M. A.; Rezola, M. L., Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs, J. Comput. Appl. Math., 133, 141-150, (2001) · Zbl 0990.42011
[3] Álvarez de Morales, M.; Moreno-Balcázar, J. J.; Pérez, T. E.; Piñar, M. A., Nondiagonal Hermite-Sobolev orthogonal polynomials, Proceedings of the International Conference on Rational Approximation, ICRA99 (Antwerp), Acta Appl. Math., 61, 1-3, 257-266, (2000) · Zbl 0983.42018
[4] Andrade, E. X.L.; Bracciali, C. F.; Sri Ranga, A., Asymptotic for Gegenbauer-Sobolev orthogonal polynomials associated with non-coherent pairs of measures, Asymptot. Anal., 60, 1-14, (2008) · Zbl 1161.33002
[5] Barrios, D.; López Lagomasino, G., Asymptotic behavior of solutions of general three term recurrence relations, Adv. Comput. Math., 26, 1-3, 9-37, (2007) · Zbl 1160.39001
[6] de Bruin, M. G.; Groenevelt, W. G.M.; Meijer, H. G., Zeros of Sobolev orthogonal polynomials of Hermite type, Appl. Math. Comput., 132, 135-166, (2002) · Zbl 1024.33004
[7] de Bruin, M. G.; Groenevelt, W. G.M.; Marcellán, F.; Meijer, H. G.; Moreno-Balcázar, J. J., Asymptotics and zeros of symmetrically coherent pairs of Hermite type, (Elaydi, S.; etal., Difference Equations, Special Functions, and Orthogonal Polynomials, Proceedings of the International Conference, Munich, 2005, (2007), World Scientific Singapore), 378-393 · Zbl 1214.42053
[8] Castaño-García, L.; Moreno-Balcázar, J. J., A mehler-heine-type formula for Hermite-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 150, 1, 25-35, (2003) · Zbl 1012.42020
[9] Chihara, T. S., An introduction to orthogonal polynomials, (1978), Gordon and Breach New York · Zbl 0389.33008
[10] Delgado, A. M.; Marcellán, F., On an extension of symmetric coherent pairs of orthogonal polynomials, J. Comput. Appl. Math., 178, 155-168, (2005) · Zbl 1077.42016
[11] Dueñas, H. A.; Huertas, E.; Marcellán, F., Asymptotic properties of Laguerre-Sobolev type orthogonal polynomials, Numer. Algorithms, 60, 51-73, (2012) · Zbl 1247.33014
[12] Iserles, A.; Koch, P. E.; Nørsett, S. P.; Sanz-Serna, J. M., On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory, 65, 2, 151-175, (1991) · Zbl 0734.42016
[13] Liu, F.-J.; Li, H.-Y.; Wang, Z.-Q., Spectral methods using generalized Laguerre functions for second and fourth order problems, Numer. Algorithms, 75, 1005-1040, (2017) · Zbl 1385.65048
[14] Liu, F.-J.; Wang, Z.-Q.; Li, H.-Y., A fully diagonalized spectral method using generalized Laguerre functions on the half line, Adv. Comput. Math., 43, 1227-1259, (2017) · Zbl 1387.76077
[15] Yuan Liu, X.-H. Yu, Z.-Q. Wang, H.-Y. Li, Hermite-Sobolev orthogonal functions and spectral methods for second and fourth order problems on unbounded domains, preprint, 2018.; Yuan Liu, X.-H. Yu, Z.-Q. Wang, H.-Y. Li, Hermite-Sobolev orthogonal functions and spectral methods for second and fourth order problems on unbounded domains, preprint, 2018.
[16] López Lagomasino, G.; Marcellán, F.; Van Assche, W., Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product, Constr. Approx., 11, 107-137, (1995) · Zbl 0840.42017
[17] Marcellán, F.; Moreno Balcázar, J. J., Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports, Acta Appl. Math., 94, 2, 163-192, (2006) · Zbl 1137.42312
[18] Marcellán, F.; Van Assche, W., Relative asymptotics for orthogonal polynomials with a Sobolev inner product, J. Approx. Theory, 72, 193-209, (1993) · Zbl 0771.42014
[19] Marcellán, F.; Martínez-Finkelshtein, A.; Moreno-Balcázar, J. J., Asymptotics of Sobolev orthogonal polynomials for symmetrically coherent pairs of measures with compact support, J. Comput. Appl. Math., 81, 2, 217-227, (1997) · Zbl 0885.42013
[20] Martínez-Finkelshtein, A.; Moreno-Balcázar, J. J.; Pijeira-Cabrera, H., Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 81, 2, 211-216, (1997) · Zbl 0895.33003
[21] Martínez-Finkelshtein, A.; Moreno-Balcázar, J. J.; Pérez, T. E.; Piñar, M. A., Asymptotics of Sobolev orthogonal polynomials for coherent pairs, J. Approx. Theory, 92, 280-293, (1998) · Zbl 0898.42006
[22] Meijer, H. G., Determination of all coherent pairs, J. Approx. Theory, 89, 321-343, (1997) · Zbl 0880.42012
[23] Moreno-Balcázar, J. J., Smallest zeros of some types of orthogonal polynomials: asymptotics, J. Comput. Appl. Math., 179, 289-301, (2005) · Zbl 1068.42023
[24] Szegő, G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, (1975), Amer. Math. Soc. Providence, RI · JFM 61.0386.03
[25] Van Assche, W., Asymptotics for orthogonal polynomials, Lecture Notes in Math., vol. 1265, (1987), Springer-Verlag Berlin · Zbl 0617.42014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.