×

Stable computation of higher order Charlier moments for signal and image reconstruction. (English) Zbl 07334712

Summary: The computation of high-order discrete orthogonal moments is very complex and unstable due to fluctuations in numerical polynomial values. In this paper, we will present new algorithms for the stable computation of high-order discrete orthogonal Charlier polynomials and moments. These algorithms are based on the use of modified recurrence relations of Charlier polynomials with respect to the order \(n\) and with respect to the variable \(x\), and on the use of the modified Gram-Schmidt orthonormalization process (GSOP). The algorithms in question allow the cancellation of terms that cause the numerical fluctuations of Charlier polynomial values during the recursive calculations. They also preserve the orthogonality property of high-order Charlier polynomials, which enables an efficient analysis of large-size bio-signals and 2D/3D images. Therefore, the simulation results prove the efficiency of the proposed algorithms when it comes to reconstructing large-size bio-signals and images.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Singh, C.; Singh, J., Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments for color object recognition, Opt. Laser Technol., 106, 234-250 (2018)
[2] Imran, S. M.; Rahman, S. M.; Hatzinakos, D., Differential components of discriminative 2D Gaussian-Hermite moments for recognition of facial expressions, Pattern Recognit., 56, 100-115 (2016)
[3] Luciano, L.; Hamza, A. B., Deep learning with geodesic moments for 3D shape classification, Pattern Recognit. Lett., 105, 182-190 (2018)
[4] R. Zhi, L. Cao, & G. Cao, “Translation and scale invariants of Krawtchouk moments. Inf. Process. Lett.”, 130, 30-35, 2018. · Zbl 1419.68206
[5] Sayyouri, M.; Hmimid, A.; Qjidaa, H., Improving the performance of image classification by Hahn moment invariants, J. Opt. Soc. Am. A, 30, 11, 2381-2394 (2013)
[6] Benouini, R.; Batioua, I.; Zenkouar, K.; Zahi, A.; El Fadili, H.; Qjidaa, H., Fast and accurate computation of Racah moment invariants for image classification, Pattern Recognit., 91, 100-110 (2019)
[7] Xiao, B.; Li, L.; Li, Y.; Li, W.; Wang, G., Image analysis by fractional-order orthogonal moments, Inf. Sci., 382, 135-149 (2017) · Zbl 1429.94026
[8] Shen, C.; Chen, Y.; Guan, X., Performance evaluation of implicit smartphones authentication via sensor-behavior analysis, Inf. Sci., 430, 538-553 (2018)
[9] Shen, C.; Li, Y.; Chen, Y.; Guan, X.; Maxion, R. A., Performance analysis of multi-motion sensor behavior for active smartphone authentication, IEEE Trans. Inf. Forensics Secur., 13, 1, 48-62 (2017)
[10] Hosny, M.; Asmaa, K.; Mohamed, E. R., Efficient compression of bio-signals by using Tchebychev moments and Artificial Bee Colony, Biocybern. Biomed. Eng., 385-398 (2018)
[11] A.bdulhussain, S. H.; Ramli, A. R.; Mahmmod, B. M.; Al-Haddad, S. A.R.; Jassim, W. A., Image edge detection operators based on orthogonal polynomials, Int. J. Image Data Fusion, 8, 3, 293-308 (2017)
[12] Rivero-Castillo, D.; Pijeira, H.; Assunçao, P., Edge detection based on Krawtchouk polynomials, J. Comput. Appl. Math., 284, 244-250 (2015) · Zbl 1358.94014
[13] Hosny, K. M.; Darwish, M. M., New set of multi-channel orthogonal moments for color image representation and recognition, Pattern Recognit., 88, 153-173 (2019)
[14] Deng, A. W.; Gwo, C. Y., Efficient computations for generalized Zernike moments and image recovery, Appl. Math. Comput., 339, 308-322 (2018) · Zbl 1428.94019
[15] Benouini, R.; Batioua, I.; Zenkouar, K.; Mrabti, F., New set of generalized legendre moment invariants for pattern recognition, Pattern Recognit. Lett., 123, 39-46 (2019)
[16] Deng, A. W.; Gwo, C. Y., Fast and stable algorithms for high-order Pseudo Zernike moments and image reconstruction, Appl. Math. Comput., 334, 239-253 (2018) · Zbl 1427.94010
[17] Shao, Z.; Shang, Y.; Zhang, Y.; Liu, X.; Guo, G., Robust watermarking using orthogonal Fourier-Mellin moments and chaotic map for double images, Signal Process., 120, 522-531 (2016)
[18] Liu, Q.; Zhu, H.; Li, Q., Object recognition by combined invariants of orthogonal Fourier-Mellin moments, (Proceedings of 8th International Conference on Information, Communications and Signal Processing ICICS’11 (2011), IEEE), 1-5
[19] Dai, X.; Liu, T.; Shu, H.; Luo, L., Pseudo-Zernike moment invariants to blur degradation and their use in image recognition, (Yang, J.; Fang, F.; Sun, C., Intelligent Science and Intelligent Data Engineering IScIDE’12 (2013), Springer), 90-97, vol. 7751 of Lecture Notes in Computer Science
[20] Deng, W.; Gwo, C. Y., Fast and stable algorithms for high-order Pseudo Zernike moments and image reconstruction, Appl. Math. Comput., 334, 239-253 (2018) · Zbl 1427.94010
[21] Yang, B.; Flusser, J.; Suk, T., Design of high-order rotation invariants from Gaussian-Hermite moments, Signal Process., 113, 1, 61-67 (2015)
[22] Wang, G.; Wang, S., Recursive computation of Tchebichef moment and its inverse transform, Pattern Recognit., 39, 1, 47-56 (2006)
[23] Chang, K. H.; Paramesran, R.; Honarvar, B.; Lim, C.-. L., Efficient hardware accelerators for the computation of Tchebichef moments, IEEE Trans. Circuits Syst. Video Technol., 22, 3, 414-425 (2012)
[24] Abdulhussain, S. H.; Ramli, A. R.; Al-Haddad, S. A.R.; Mahmmod, B. M.; Jassim, W. A., On computational aspects of Tchebichef polynomials for higher polynomial order, IEEE Access, 5, 2470-2478 (2017)
[25] Camacho-Bello, C.; Rivera-Lopez, J. S., Some computational aspects of Tchebichef moments for higher orders, Pattern Recognit. Lett., 112, 332-339 (2018)
[26] Zhang, L.; Xiao, W.-. W.; Ji, Z., Local affine transform invariant image watermarking by Krawtchouk moment invariants, IET Inf. Secur., 1, 3, 97-105 (2007)
[27] Honarvar, B.; Flusser, J., Fast computation of Krawtchouk moments, Inf. Sci., 288, 73-86 (2014) · Zbl 1355.94009
[28] Abdulhussain, S. H.; Ramli, A. R.; Al-Haddad, S. A.R.; Mahmmod, B. M.; Jassim, W. A., Fast recursive computation of Krawtchouk polynomials, J. Math. Imaging Vis., 60, 3, 285-303 (2018) · Zbl 1400.33034
[29] Venkataramana, A.; Ananth Raj, P., Computation of Hahn moments for large size images, J. Comput. Sci., 6, 9, 1037-1041 (2010)
[30] Zhu, H.; Shu, H.; Zhou, J.; Luo, L.; Coatrieux, J.-. L., Image analysis by discrete orthogonal dual Hahn moments, Pattern Recognit. Lett., 28, 1688-1704 (2007)
[31] Karakasis, E. G.; Papakostas, G.; Koulouriotis, D. E.; Tourassis, V., Generalized dual Hahn moment invariants, Pattern Recognit., 46, 7, 1998-2014 (2013) · Zbl 1296.68158
[32] Zhu, H.; Shu, H.; Liang, J.; Luo, L.; Coatrieux, J.-L., Image analysis by discrete orthogonal Racah moments, Signal Process., 87, 687-708 (2007) · Zbl 1186.94405
[33] Sayyouri, M.; Hmimid, A.; Qjidaa, H., A fast computation of novel set of Meixner invariant moments for image analysis, Circuits Syst. Signal Process., 34, 3, 875-900 (2015)
[34] Hmimid, A.; Sayyouri, M.; Qjidaa, H., Fast computation of separable two-dimensional discrete invariant moments for image classification, Pattern Recognit., 48, 509-521 (2015) · Zbl 1373.68352
[35] Hmimid, A.; Sayyouri, M.; Qjidaa, H., Image classification using separable invariant moments of Charlier-Meixner and support vector machine, Multimed. Tools Appl., 77, 18, 23607-23631 (2018)
[36] Karmouni, H.; Jahid, T.; Sayyouri, M.; El Alami, R.; Qjidaa, H., Fast 3D image reconstruction by cuboids and 3D Charlier’s moments, J. Real-Time Image Process., 1-17 (2019)
[37] Sayyouri, M.; Hmimid, A.; Qjidaa, H., Image analysis using separable discrete moments of Charlier-Hahn, Multimed. Tools Appl., 75, 1, 547-571 (2014)
[38] Karmouni, H.; Hmimid, A.; Jahid, T.; Sayyouri, M.; Qjidaa, H.; Rezzouk, A., Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation, Circuits Systems Signal Process., 1-19 (2018)
[39] Xu, Y., On discrete orthogonal polynomials of several variables, Adv. Appl. Math., 33, 615-632 (2004) · Zbl 1069.33011
[40] Xu, Y., Second-order difference equations and discrete orthogonal polynomials of two variables, Int. Math. Res. Not., 449-475 (2005)
[41] Spiliotis, I. M.; Mertzios, B. G., Real-time computation of two-dimensional moments on binary images using image block representation, IEEE Trans. Image Process., 7, 11, 1609-1615 (1998)
[42] Shu, H. Z.; Zhang, H.; Chen, B. J.; Haigron, P.; Luo, L. M., Fast computation of Tchebichef moments for binary and gray-scale images, IEEE Trans. Image Process., 19, 12, 3171-3180 (2010) · Zbl 1372.65060
[43] Papakostas, G. A.; Karakasis, E. G.; Koulouriotis, D. E., Accurate and speedy computation of image Legendre moments for computer vision applications, Image Vis. Comput., 28, 3, 414-423 (2010)
[44] Papakostas, G. A.; Koulouriotis, D. E.; Karakasis, E. G., A unified methodology for the efficient computation of discrete orthogonal image moments, Inf. Sci., 179, 20, 3619-3633 (2009)
[45] Koekoek, R.; L.esky, P. A.; Swarttouw, R. F., Hypergeometric Orthogonal Polynomials and Their Q-Analogues (2010), Springer Science & Business Media
[46] Pooyan, M.; Taheri, A.; Moazami-Goudarzi, M.; Saboori, I., Wavelet compression of ECG signals using SPIHT algorithm, Int. J. Signal Process., 1, 3, 4 (2004)
[47] https://www.physionet.org/physiobank/database/
[48] Siddiqi, K.; Zhang, J.; Macrini, D.; Shokoufandeh, A.; Bouix, S.; Dick inson, S., Retrieving articulated 3-D models using medial surfaces, Mach. Vis. Appl., 19, 261-275 (2008) · Zbl 1331.68260
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.