×

Gegenbauer cardinal functions for the inverse source parabolic problem with a time-fractional diffusion equation. (English) Zbl 07499746

Summary: In this paper, we study a time-fractional inverse source problem. We introduce a new variable and transform inverse problem to an equivalent direct problem. By using maximum principle approach, the existence, uniqueness and stability of the inverse problem are displayed, then a numerical method is proposed to solve the problem. The main idea of the proposed method is based on expanding the approximate solution as the elements of Gegenbauer cardinal function. By using derivative and fractional derivative matrixes, the problem is reduced to the solution of a system of algebraic equations thus greatly simplifying the problem. This study concerns both theoretical and numerical aspects, where we deal with the construction and convergence analysis of the discretization schemes.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

BVPh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atkinson, K.; Han, W., 2009. Theoretical Numerical Analysis, Berlin: Germany: Springer, Berlin · Zbl 1181.47078
[2] Bello Cruza, J. Y.; Pijeira Cabrerab, H.; Mrquezc, C.; Urbina, W., Sobolev-Gegenbauer-type orthogonality and a hydrodynamical interpretation, 2011. Integer. Transf. Spec. F., 22, 711-722 · Zbl 1231.42024
[3] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, 2010. Numer. Meth. Part. D. E., 26, 2, 448-479 · Zbl 1185.65187
[4] Erdogan, A. S.; Uygun, H., A note on the inverse problem for a fractional parabolic equation, 2012. Abst. Appl. Anal · Zbl 1253.35217
[5] Evans, L. C., 1998. Partial Differential Equations, Providence, RI: American Mathematical Society, Providence, RI · Zbl 0902.35002
[6] Friedman, A., 1964. Partial Differential Equation of Parabolic Type, Englewood Cliffs, NJ: Prentice-Hall, Englewood Cliffs, NJ · Zbl 0144.34903
[7] Fix, G. J.; Roop, J. P., Least square finite-element solution of a fractional order two-point boundary value problem, 2004. Comput. Math. Appl., 48, 1017-1033 · Zbl 1069.65094
[8] Funaro, D., 1992. Polynomial Approximation of Differential Equations, New York, NY: Springer Verlag, New York, NY · Zbl 0774.41010
[9] Gao, G. H.; Sun, Z. Z., A compact difference scheme for the fractional sub-diffusion equations, 2001. Comput. Phys., 230, 586-595 · Zbl 1211.65112
[10] Gorenflo, R.; Mainardi, F., Some recent advances in theory and simulation of fractional diffusion processes, 2009. J. Comput. Appl. Math., 229, 2, 400-415 · Zbl 1166.45004
[11] Hasanov, A., Identification of unknown diffusion and convection coefficients in ion transport problems from flux data: An analytical approach, 2010. J. Math. Chem., 48, 2, 413-423 · Zbl 1302.93075
[12] Hasanov, A.; Tatar, S., An inversion method for identification of elastoplastic properties of a beam from torsional experiment, 2010. Int. J. Nonline. Mech., 45, 562-571
[13] Ilic, M.; Liu, F.; Turner, I.; Anh, V., Numerical approximation of a fractional-in-space diffusion equation (I), 2005. Fract. Calc. Appl. Anal., 8, 323-341 · Zbl 1126.26009
[14] Ilic, M.; Liu, F.; Turner, I.; Anh, V., Numerical approximation of a fractional-in-space diffusion equation (II) with non homogeneous boundary conditions, 2006. Fract. Calc. Appl. Anal., 9, 333-349 · Zbl 1132.35507
[15] Jones, B. F., Various methods for finding unknown coefficients in parabolic differential equations, 1963. Comn. Pure Appl. Math., 16, 33-44 · Zbl 0119.08302
[16] Kirsch, A., 2011. An Introduction to the Mathematical Theory of Inverse Problems, New York, NY: Springer, New York, NY · Zbl 1213.35004
[17] Larsson, S.; Thomee, V., 2003. Partial Differential Equations with Numerical Methods, New York, NY: Springer, New York, NY · Zbl 1025.65002
[18] Li, X. J.; Xu, C. J., A space-time spectral method for the time fractional differential equation, 2009. SIAM J. Numer. Anal., 47, 2108-2131 · Zbl 1193.35243
[19] Li, C.; Zeng, F.; Liu, F., Spectral approximation to the fractional integral and derivatives, 2012. Fract. Calc. Appl. Anal., 15, 383-406 · Zbl 1276.26016
[20] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, 2007. J. Comput. Phys., 225, 1533-1552 · Zbl 1126.65121
[21] Liu, J. J.; Yamamoto, M., A backward problem for the time-fractional diffusion equation, 2010. Appl. Anal., 89, 11, 1769-1788 · Zbl 1204.35177
[22] Mason, J. C.; Handscomb, D. C., 2003. Chebyshev Polynomials, Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1015.33001
[23] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection diffusion equations, 2004. J. Comput. Appl. Math., 172, 65-77 · Zbl 1126.76346
[24] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, 2000. Phys. Rep., 339, 1, 1-77 · Zbl 0984.82032
[25] Moura Neto, F. D.; da Silva Neto, A. J., 2013. An Introduction to Inverse Problems with Applications, New York, NY: Springer, New York, NY · Zbl 1264.65183
[26] Murio, D. A., Stable numerical solution of a fractional-diffusion inverse heat conduction problem, 2007. Comput. Math. Appl., 53, 1492-1501 · Zbl 1152.65463
[27] Murio, D. A., Stable numerical evaluation of Grüunwald-Letnikov fractional derivatives applied to a fractional IHCP, 2009. Inverse. Probl. Sci. Eng., 17, 229-243 · Zbl 1159.65313
[28] Orlovsky, D.; Piskarev, S., On approximation of inverse problems for abstract elliptic problems, 2009. J. Inverse. Ill-Pose P., 17, 8, 765-782 · Zbl 1195.65159
[29] Özkum, G.; Demir, A.; Erman, S.; Korkmaz, E.; Özgur, B., On the inverse problem of the fractional heat-like partial differential equations: Determination of the source function, 2013. Adv. Math. Phys., 8 · Zbl 1291.35446
[30] Podlubny, I., 1999. Fractional Differential Equations, San Diego, CA: Academic Press, San Diego, CA · Zbl 0918.34010
[31] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: An empirical study, 2002. Phys. A., 314, 1, 749-755 · Zbl 1001.91033
[32] Roop, J. P., Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in, 2006. J. Comput. Appl. Math., 193, 243-268 · Zbl 1092.65122
[33] Rostamy, D.; Karimi, K., A new operational matrix method based on the Bernstein polynomials for solving the backward inverse heat conduction problems, 2014. Int. J. Numer. Method H., 24, 3, 669-678 · Zbl 1356.80071
[34] Serov, V.; Päivärinta, L., Inverse scattering problem for two-dimensional Schrödinger operator, 2006. J. Inverse. Ill-Pose P., 14, 3, 295-305 · Zbl 1111.35126
[35] Suli, E.; Mayers, D. F., 2003. An Introduction to Numerical Analysis, London, UK: Oxford University Press, London, UK · Zbl 1033.65001
[36] Szegö, G., 1975. Orthogonal Polynomials, Providence, RI: AMS Colloquium Publication, Providence, RI · JFM 61.0386.03
[37] Uhlmann, G., 2013. Inverse Problems and Applications: Inside Out II, MSRI Publications 60, Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1277.65002
[38] Wang, W. Y.; Yamamoto, M.; Han, B., Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation, 2013. Inverse Probl., 29, 9, 1-15 · Zbl 1296.65126
[39] Wei, T.; Zhang, Z. Q., Reconstruction of a time-dependent source term in a time-fractional diffusion equation, 2013. Eng. Anal. Bound. Elem., 37, 1, 23-31 · Zbl 1351.35267
[40] Xu, H.; Liao, S. J.; You, X. C., Analysis of nonlinear fractional partial differential equations with the homotopy analysis method, 2009. Commun. Nonliner. Sci. Numer. Simulat., 14, 4, 1152-1156 · Zbl 1221.65286
[41] Yin, H. M., A uniqueness theorem for a class of nonclassical parabolic equations, 1989. App. Anal., 34, 67-78 · Zbl 0659.35104
[42] Zhang, Y.; Xu, X., Inverse source problem for a fractional diffusion equation, 2011. Inverse. Probl., 27, 3, 1-12 · Zbl 1211.35280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.