×

Strong asymptotics for Sobolev orthogonal polynomials. (English) Zbl 0937.42011

The authors prove strong asymptotic results for the polynomials \(Q_n\), orthogonal with respect to the inner product \[ \langle f,g,\rangle=\sum_{k=0}^n \int_{\Delta_k} f^{(k)}(x)g^{(k)}(x) d\mu_k(x), \] with \(\{\mu_k\}\) measures supported in \([-1,1]\), satisfying Szegő’s condition.
The main results concern the following situation: \(\Delta_k\subset\Delta_m\;(0\leq k\leq m-1),\;\Delta_m=[-1,1]\), \(\kappa_n=\langle Q_n,Q_n\rangle\), \(\mathcal F\) the Szegő extremal function corresponding to \(\Delta_m\), \(\varphi(z)\) the conformal map of \([-1,1]\) to the exterior of \(|z|=1/2\).
A. If \(d\mu_m(x)=\rho(x)dx\) with \(\rho\) belonging to the Szegő class on \([-1,1]\), \(\{\mu_k\}_0^{m-1}\) finite positive Borel measures, \(\gamma_k(\rho)= \int|P_k(\rho;x)|^2d\mu_m(x)\) with \(P_k\) the orthogonal polynomial of degree \(k\) with respect to \(d\mu_m(x)\), then \[ \lim_{n\rightarrow\infty} {\kappa_n\over n^{2m}\gamma_{n-m}(\rho)}=1, \quad \lim_{n\rightarrow\infty} {Q_n^{(m)}\over n^m\varphi^{n-m}(z)}= {\mathcal F}(z), \quad \lim_{n\rightarrow\infty} {Q_n^{(m)}\over n^mP_{n-m}(\rho;z)}=1, \] the last two limits uniformly on compact subsets of \([-1,1]\).
B. If \(\{\mu_k\}_0^m\) are finite, positive, absolutely continuous Borel measures supported on \([-1,1]\), all belonging to the Szegő class, then \[ \lim_{n\rightarrow\infty} {Q_n^{(k)}\over n^k\varphi^{n-k}(z)}= {{\mathcal F}(z)\over (\varphi'(z))^{n-k}}, \qquad \lim_{n\rightarrow\infty} {Q_n^{(k)}\over n^kP_{n-k}(d\mu_m;z)} ={1\over (\varphi'(z))^{n-k}}, \] for \(0\leq k\leq m\), uniformly on compact subsets of \([-1,1]\).
An excellent contribution to the steadily growing insight into the nature of Sobolev orthogonal polynomials. The results found, do not ask for information about the location of the zeros of \(Q_n\) (which might be outside the complex hull of the supports of the underlying measures).

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alfaro, M.; Marcellán, F.; Rezola, M. L., Orthogonal polynomials on Sobolev spaces: old and new directions, J. Comput. Appl. Math., 48, 113-132 (1993) · Zbl 0790.42015
[2] D. Barrios, G. López and H. Pijeira,The moment problem for a Sobolev inner product, to appear in J. Approx. Theory. · Zbl 0980.44008
[3] Duren, P., Theory of H^p Spaces (1970), New York: Academic Press, New York · Zbl 0215.20203
[4] Gautschi, W.; Kuijlars, A. B.J., Zeros and critical points of Sobolev orthogonal polynomials, J. Approx. Theory, 91, 117-137 (1997) · Zbl 0897.42014
[5] López, G.; Marcellán, F.; Van Assche, W., Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product, Constr. Approx., 11, 107-137 (1995) · Zbl 0840.42017
[6] G. López and H. Pijeira,Zero location and n-th root asymptotics of Sobolev orthogonal polynomials, to appear in J. Approx. Theory. · Zbl 0949.42020
[7] Marcellán, F.; Van Assche, W., Relative asymptotics for orthogonal polynomials, J. Approx. Theory, 72, 193-209 (1993) · Zbl 0771.42014
[8] Finkelshtein, A. Martínez, Asymptotic properties of Sobolev orthogonal polynomials, J. Comput. Appl. Math., 99, 491-510 (1998) · Zbl 0933.42013
[9] A. Martínez Finkelshtein,Bernstein-Szegö’s theorem for Sobolev orthogonal polynomials, to appear in Constr. Approx. · Zbl 0951.42014
[10] Meijer, H. G., A short history of orthogonal polynomials in Sobolev space I. The non-discrete case, Nieuw Archief voor Wiskunde, 14, 93-113 (1996) · Zbl 0862.33001
[11] Stahl, H.; Totik, V., General Orthogonal Polynomials (1992), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0791.33009
[12] Szegö, G., Orthogonal Polynomials (1975), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 0305.42011
[13] Widom, H., Extremal polynomials associated with a system of curves in the complex plane, Adv. Math., 3, 127-232 (1969) · Zbl 0183.07503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.