×

Loops and trees in generic EFTs. (English) Zbl 1454.81141

Summary: We consider aspects of tree and one-loop behavior in a generic 4d EFT of massless scalars, fermions, and vectors, with a particular eye to the high-energy limit of the Standard Model EFT at operator dimensions 6 and 8. First, we classify the possible Lorentz structures of operators and the subset of these that can arise at tree-level in a weakly coupled UV completion, extending the tree/loop classification through dimension 8 using functional methods. Second, we investigate how operators contribute to tree and one-loop helicity amplitudes, exploring the impact of non-renormalization theorems through dimension 8. We further observe that many dimension 6 contributions to helicity amplitudes, including rational parts, vanish exactly at one-loop level. This suggests the impact of helicity selection rules extends beyond one loop in non-supersymmetric EFTs.

MSC:

81T12 Effective quantum field theories
81U20 \(S\)-matrix theory, etc. in quantum theory

Software:

FORM; FeynArts; CutTools; DEFT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . . : Higher dimension operators in the SM EFT, JHEP08 (2017) 016 [Erratum JHEP09 (2019) 019] [arXiv:1512.03433] [INSPIRE].
[2] L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].
[3] M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys. B268 (1986) 669 [INSPIRE].
[4] L.-H. Chan, Derivative Expansion for the One Loop Effective Actions With Internal Symmetry, Phys. Rev. Lett.57 (1986) 1199 [INSPIRE].
[5] O. Cheyette, Effective Action for the Standard Model With Large Higgs Mass, Nucl. Phys. B297 (1988) 183 [INSPIRE].
[6] B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP01 (2016) 023 [arXiv:1412.1837] [INSPIRE]. · Zbl 1388.81246
[7] A. Drozd, J. Ellis, J. Quevillon and T. You, The Universal One-Loop Effective Action, JHEP03 (2016) 180 [arXiv:1512.03003] [INSPIRE].
[8] F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after matching, Eur. Phys. J. C76 (2016) 244 [arXiv:1602.00126] [INSPIRE].
[9] M. Boggia, R. Gomez-Ambrosio and G. Passarino, Low energy behaviour of standard model extensions, JHEP05 (2016) 162 [arXiv:1603.03660] [INSPIRE].
[10] B. Henning, X. Lu and H. Murayama, One-loop Matching and Running with Covariant Derivative Expansion, JHEP01 (2018) 123 [arXiv:1604.01019] [INSPIRE]. · Zbl 1384.81103
[11] S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the Universal One-Loop Effective Action, Phys. Lett. B762 (2016) 166 [arXiv:1604.02445] [INSPIRE]. · Zbl 1390.81281
[12] J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP09 (2016) 156 [arXiv:1607.02142] [INSPIRE]. · Zbl 1390.81694
[13] Z. Zhang, Covariant diagrams for one-loop matching, JHEP05 (2017) 152 [arXiv:1610.00710] [INSPIRE]. · Zbl 1380.81136
[14] S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the Universal One-Loop Effective Action: Heavy-Light Coefficients, JHEP08 (2017) 054 [arXiv:1706.07765] [INSPIRE]. · Zbl 1390.81281
[15] A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
[16] C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett.115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].
[17] R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, Phys. Lett. B739 (2014) 95 [arXiv:1409.0868] [INSPIRE]. · Zbl 1306.81384
[18] C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(h → γγ), JHEP04 (2013) 016 [arXiv:1301.2588] [INSPIRE]. · Zbl 1342.81342
[19] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. · Zbl 1342.81344
[20] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. · Zbl 1342.81344
[21] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
[22] J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE].
[23] J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
[24] Y. Shadmi and Y. Weiss, Effective Field Theory Amplitudes the On-Shell Way: Scalar and Vector Couplings to Gluons, JHEP02 (2019) 165 [arXiv:1809.09644] [INSPIRE].
[25] T. Ma, J. Shu and M.-L. Xiao, Standard Model Effective Field Theory from On-shell Amplitudes, arXiv:1902.06752 [INSPIRE].
[26] R. Aoude and C.S. Machado, The Rise of SMEFT On-shell Amplitudes, JHEP12 (2019) 058 [arXiv:1905.11433] [INSPIRE].
[27] G. Durieux, T. Kitahara, Y. Shadmi and Y. Weiss, The electroweak effective field theory from on-shell amplitudes, JHEP01 (2020) 119 [arXiv:1909.10551] [INSPIRE].
[28] G. Durieux and C.S. Machado, Enumerating higher-dimensional operators with on-shell amplitudes, Phys. Rev. D101 (2020) 095021 [arXiv:1912.08827] [INSPIRE].
[29] C. Arzt, Reduced effective Lagrangians, Phys. Lett. B342 (1995) 189 [hep-ph/9304230] [INSPIRE].
[30] G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
[31] M.B. Einhorn and J. Wudka, The Bases of Effective Field Theories, Nucl. Phys. B876 (2013) 556 [arXiv:1307.0478] [INSPIRE]. · Zbl 1284.81325
[32] E.E. Jenkins, A.V. Manohar and M. Trott, On Gauge Invariance and Minimal Coupling, JHEP09 (2013) 063 [arXiv:1305.0017] [INSPIRE].
[33] B. Gripaios, Lectures on Effective Field Theory, arXiv:1506.05039 [INSPIRE].
[34] B. Gripaios and D. Sutherland, DEFT: A program for operators in EFT, JHEP01 (2019) 128 [arXiv:1807.07546] [INSPIRE].
[35] C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP02 (2014) 101 [arXiv:1308.6323] [INSPIRE].
[36] D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP11 (2016) 141 [arXiv:1603.03064] [INSPIRE].
[37] D. Liu and L.-T. Wang, Prospects for precision measurement of diboson processes in the semileptonic decay channel in future LHC runs, Phys. Rev. D99 (2019) 055001 [arXiv:1804.08688] [INSPIRE].
[38] C. Hays, A. Martin, V. Sanz and J. Setford, On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP02 (2019) 123 [arXiv:1808.00442] [INSPIRE].
[39] G. Passarino, XEFT, the challenging path up the hill: dim = 6 and dim = 8, arXiv:1901.04177 [INSPIRE].
[40] C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B433 (1995) 41 [hep-ph/9405214] [INSPIRE].
[41] F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP09 (2010) 033 [arXiv:1005.3998] [INSPIRE]. · Zbl 1291.81438
[42] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[43] R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept.518 (2012) 141 [arXiv:1105.4319] [INSPIRE].
[44] G. Passarino and M.J.G. Veltman, One Loop Corrections for e^+e^−Annihilation Into μ^+μ^−in the Weinberg Model, Nucl. Phys. B160 (1979) 151 [INSPIRE].
[45] G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [INSPIRE]. · Zbl 1116.81067
[46] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[47] L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys. B423 (1994) 3 [Erratum ibid.452 (1995) 724] [hep-ph/9312363] [INSPIRE].
[48] Z. Bern and D.A. Kosower, The Computation of loop amplitudes in gauge theories, Nucl. Phys. B379 (1992) 451 [INSPIRE].
[49] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B411 (1994) 397 [hep-ph/9305239] [INSPIRE].
[50] L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α_s) production of W^+W^−, W^±Z, ZZ, W^±γ, or Zγ pairs at hadron colliders, Nucl. Phys. B531 (1998) 3 [hep-ph/9803250] [INSPIRE].
[51] C.F. Berger, V. Del Duca and L.J. Dixon, Recursive Construction of Higgs-Plus-Multiparton Loop Amplitudes: The Last of the Phi-nite Loop Amplitudes, Phys. Rev. D74 (2006) 094021 [Erratum ibid.76 (2007) 099901] [hep-ph/0608180] [INSPIRE].
[52] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE]. · Zbl 1317.68286
[53] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE]. · Zbl 0994.81082
[54] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[55] Z. Bern, J. Parra-Martinez and E. Sawyer, Nonrenormalization and Operator Mixing via On-Shell Methods, Phys. Rev. Lett.124 (2020) 051601 [arXiv:1910.05831] [INSPIRE].
[56] J. Elias-Miró, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B747 (2015) 272 [arXiv:1412.7151] [INSPIRE]. · Zbl 1369.81065
[57] B. Henning and T. Melia, Conformal-helicity duality & the Hilbert space of free CFTs, arXiv:1902.06747 [INSPIRE].
[58] B. Henning and T. Melia, Constructing effective field theories via their harmonics, Phys. Rev. D100 (2019) 016015 [arXiv:1902.06754] [INSPIRE].
[59] M. Jiang, J. Shu, M.-L. Xiao and Y.-H. Zheng, New Selection Rules from Angular Momentum Conservation, arXiv:2001.04481 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.