×

Surface waves along liquid cylinders. I: Stabilising effect of gravity on the Plateau-Rayleigh instability. (English) Zbl 1460.76105

Summary: We study the shape and the geometrical properties of sessile drops with translational invariance (namely ‘liquid cylinders’) deposited upon a flat superhydrophobic substrate. We account for the flattening effects of gravity on the shape of the drop using a pendulum rotation motion analogy. In the framework of the inviscid Saint-Venant equations, we show that liquid cylinders are always unstable because of the Plateau-Rayleigh instability. However, a cylindrical drop deposited upon a superhydrophobic non-flat channel (here, wedge-shaped channels) is stabilised beyond a critical cross-sectional area. The critical threshold of the Plateau-Rayleigh instability is analytically computed for various profiles of the channel. The stability analysis is performed in terms of an effective propagation speed of varicose waves. Experiments are performed in order to test these analytical results. We measure the critical drop size at which breakup occurs, together with the decreasing effective propagation speed of varicose waves as the threshold is approached. Our theoretical predictions are in excellent agreement with the experimental measurements.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B45 Capillarity (surface tension) for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amini, G. & Dolatabadi, A.2011Capillary instability of elliptic liquid jets. Phys. Fluids23, 084109.
[2] Amini, G., Lv, L., Dolatabadi, A. & Ihme, M.2014Instability of elliptic liquid jets: temporal linear stability theory and experimental analysis. Phys. Fluids26, 114105.
[3] Arkhipenko, V. I., Barkov, Y. D., Bashtovoi, V. G. & Krakov, M. S.1980Investigation into the stability of a stationary cylindrical column of magnetizable liquid. Fluid Dyn.15, 477-481.
[4] Birnir, B., Mertens, K., Putkaradze, V. & Vorobieff, P.2008Morphology of a stream flowing down an inclined plane. Part 2. Meandering. J. Fluid Mech.603, 401-411. · Zbl 1145.76378
[5] Bostwick, J. B. & Steen, P. H.2010Stability of constrained cylindrical interfaces and the torus lift of Plateau-Rayleigh. J. Fluid Mech.647, 201-219. · Zbl 1189.76227
[6] Bostwick, J. B. & Steen, P. H.2018Static rivulet instabilities: varicose and sinuous modes. J. Fluid Mech.837, 819-838. · Zbl 1419.76223
[7] Couvreur, S.2013 Instabilités de filets liquides sur plan incliné. PhD thesis, Université Paris Diderot.
[8] Daerr, A., Eggers, J., Limat, L. & Valade, N.2011General mechanism for the meandering instability of rivulets of Newtonian fluids. Phys. Rev. Lett.106, 184501.
[9] Davis, S. H.1980Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J. Fluid Mech.98, 225-242. · Zbl 0432.76048
[10] Decoene, A., Bonaventura, L., Miglio, E. & Saleri, F.2009Asymptotic derivation of the section-averaged shallow water equations. Math. Models Meth. Appl. Sci.19, 387-417. · Zbl 1207.35092
[11] Diez, J. A., González, A. G. & Kondic, L.2009On the breakup of fluid rivulets. Phys. Fluids21 (8), 082105. · Zbl 1183.76179
[12] Duclaux, V., Clanet, C. & Quéré, D.2006The effects of gravity on the capillary instability in tubes. J. Fluid Mech.556, 217-226. · Zbl 1093.76509
[13] Goren, S. L.1962The instability of an annular thread of fluid. J. Fluid Mech.12, 309-319. · Zbl 0105.39602
[14] Gupta, R., Vaikuntanathan, V. & Siakumar, S.2016Superhydrophobic qualities of an aluminum surface coated with hydrophobic solution NeverWet. Colloids Surf. A500, 45-53.
[15] Gutmark, E. J. & Grinstein, F. F.1999Flow control with noncircular jets. Annu. Rev. Fluid Mech.31, 239-272.
[16] Ku, T. C., Ramsey, J. H. & Clinton, W. C.1968Calculation of liquid droplet profiles from closed-form solution of Young-Laplace equation. IBM J. Res. Dev.12, 441-447. · Zbl 0187.49401
[17] Lamb, H.1928Statics, including Hydrostatics and the Elements of the Theory of Elasticity, 3rd edn. Cambridge University Press. · JFM 54.0819.02
[18] Landau, L. D. & Lifschitz, E. M.1987Fluid Mechanics, 2nd edn. Pergamon. · Zbl 0655.76001
[19] Langbein, D.1990The shape and stability of liquid menisci at solid edges. J. Fluid Mech.213, 251-265. · Zbl 0698.76058
[20] Mccuan, J.2017 The stability of cylindrical pendant drop. In Memoirs of the American Mathematical Society, 250 (1189), doi:10.1090/memo/1189. · Zbl 1400.76003
[21] Mertens, K., Putkaradze, V. & Vorobieff, P.2005Morphology of a stream flowing down an inclined plane. Part 1. Braiding. J. Fluid Mech.531, 49-58. · Zbl 1070.76017
[22] Michael, D. H. & Williams, P. G.1977The equilibrium and stability of sessile drops. Proc. R. Soc. Lond. A354, 127-136. · Zbl 0382.76042
[23] Mora, S., Phou, T., Fromental, J.-M., Pismen, L. M. & Pomeau, Y.2010Capillary driven instability of a soft solid. Phys. Rev. Lett.105, 214301.
[24] Morris, P. J.1988Instability of elliptic jets. AIAA J.26, 172-178.
[25] Myers, T. G., Liang, H. X. & Wetton, B.2004The stability and flow of a rivulet driven by interfacial shear and gravity. Intl J. Nonlinear Mech.39, 1239-1249. · Zbl 1348.76074
[26] Nakagawa, T.1992Rivulet meanders on a smooth hydrophobic surface. Intl J. Multiphase Flow18, 455-463. · Zbl 1144.76429
[27] Nakagawa, T. & Scott, J. C.1984Stream meanders on a smooth hydrophobic surface. J. Fluid Mech.149, 88-99.
[28] Perrard, S., Deike, L., Duchêne, C. & Pham, C.-T.2015Capillary solitons on a levitated medium. Phys. Rev. E92, 011002(R).
[29] Plateau, J.1849Recherches expérimentales et théoriques sur les figures d’une masse liquide sans pesanteur. Mémoires de l’Académie royale des sciences, des lettres et des beaux arts de Belgique23, 1-50.
[30] Plateau, J.1873Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Villars. · JFM 06.0516.03
[31] Quinn, W. R.1992Streamwise evolution of a square jet cross section. AIAA J.30, 2852-2857.
[32] Rayleigh, Lord1878On the instability of jets. Proc. Lond. Math. Soc.10, 4-13. · JFM 11.0685.01
[33] Rayleigh, Lord1879On the capillary phenomena of jets. Proc. R. Soc. Lond.29, 71-97.
[34] Rayleigh, Lord1892aOn the instability of a cylinder of viscous liquid under capillary force. Philos. Mag.34, 145-154. · JFM 24.0972.03
[35] Rayleigh, Lord1892bOn the instability of cylindrical fluid surfaces. Philos. Mag.34, 177-180. · JFM 24.0972.04
[36] Roman, B., Gay, C. & Clanet, C.2003 Pendulum, drops and rods: an analogy. Available at:https://www.researchgate.net/publication/237480399_Pendulum_Drops_and_Rods_a_physical_analogy.
[37] Roy, V. & Schwartz, L. W.1999On the stability of liquid ridges. J. Fluid Mech.291, 293-318. · Zbl 0973.76030
[38] Saint-Venant, A. J. C. B. De1871Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. C. R. Acad. Sci.73, 147-154 and 237-240. · JFM 03.0482.04
[39] Savart, F.1833Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi. Ann. Chim. Phys.53, 337-386.
[40] Schmuki, P. & Laso, M.1990On the stability of rivulet flow. J. Fluid Mech.215, 125-143.
[41] Sekimoto, K., Oguma, R. & Kawasaki, K.1987Morphological stability analysis of partial wetting. Ann. Phys.176, 359-392.
[42] Speth, R. L. & Lauga, E.2009Capillary instability on a hydrophilic stripe. New J. Phys.11, 075024.
[43] Stone, H. A. & Leal, L. G.1989aThe influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. J. Fluid Mech.206, 223-263.
[44] Stone, H. A. & Leal, L. G.1989bRelaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech.198, 399-427.
[45] Tam, C. K. W. & Thies, A. T.1992Instability of rectangular jets. J. Fluid Mech.248, 425-448. · Zbl 0775.76049
[46] Tomotika, S.1935On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A150, 322-337. · JFM 61.1539.01
[47] Yang, L. & Homsy, G. M.2007Capillary instabilities of liquid films inside a wedge. Phys. Fluids19, 044101. · Zbl 1146.76570
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.