×

How do singularities move in potential flow? (English) Zbl 1343.76007

Summary: The equations of motion of point vortices embedded in incompressible flow go back to Kirchhoff. They are a paradigm of reduction of an infinite-dimensional dynamical system, namely the incompressible Euler equation, to a finite-dimensional system, and have been called a ”classical applied mathematical playground”. The equation of motion for a point vortex can be viewed as the statement that the translational velocity of the point vortex is obtained by removing the leading-order singularity due to the point vortex when computing its velocity. The approaches used to obtain this result are reviewed, along with their history and limitations. A formulation that can be extended to study the motion of higher singularities (e.g. dipoles) is then presented. Extensions to more complex physical situations are also discussed.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Helmholtz, H., Uber Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen, Crelle’s J., 55, 25-55 (1858) · ERAM 055.1448cj
[2] Tait, P. G., Translation of ‘On integrals of the hydrodynamical equations which express vortex motion’ by H. Helmholtz, Phil. Mag., 33, 485-512 (1867)
[3] Aref, H., Point vortex dynamics: a classical mathematics playground, J. Math. Phys., 48, 065401 (2007) · Zbl 1144.81308
[4] Aref, H., The development of chaotic advection, Phys. Fluids, 14, 1315-1325 (2002) · Zbl 1185.76034
[5] Shashikanth, B. N.; Marsden, J. E.; Burdick, J. W.; Kelly, S. D., The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with \(N\) point vortices, Phys. Fluids, 14, 1214 (2002) · Zbl 1185.76481
[6] Borisov, A. V.; Mamaev, I. S.; Ramodanov, S. M., Dynamic interaction of point vortices and a two-dimensional cylinder, J. Math. Phys., 48, 065403 (2007) · Zbl 1144.81318
[7] Vankerschaver, J.; Kanso, E.; Marsden, J. E., The geometry and dynamics of interacting rigid bodies and point vortices, J. Geom. Mech., 2, 223-266 (2009) · Zbl 1191.53055
[8] Cortelezzi, L., Nonlinear feedback control of the wake past a plate with a suction point on the downstream wall, J. Fluid Mech., 327, 303-324 (1996) · Zbl 0884.76004
[9] Protas, B., Vortex dynamics models in flow control problems, Nonlinearity, 21, R203-R250 (2008) · Zbl 1154.76014
[10] Cortelezzi, L.; Leonard, A., Point vortex model of the unsteady separated flow past a semi-infinite plate with transverse motion, Fluid Dynam. Res., 11, 263-295 (1993)
[11] Shukla, R. K.; Eldredge, J. D., An inviscid model for vortex shedding from a deforming body, Theor. Comput. Fluid Dyn., 21, 343-368 (2007) · Zbl 1161.76448
[12] Michelin, S.; Llewellyn Smith, S. G.; Glover, B. J., Vortex shedding model of a flapping flag, J. Fluid Mech., 617, 1-10 (2008) · Zbl 1155.76018
[13] Michelin, S.; Llewellyn Smith, S. G., An unsteady point vortex method for coupled fluid-solid problems, Theor. Comput. Fluid Dyn., 23, 127-153 (2009) · Zbl 1234.76043
[14] Michelin, S.; Llewellyn Smith, S. G., Resonance and propulsion performancee of a heaving flexible wing, Phys. Fluids, 21, 071902 (2009) · Zbl 1183.76353
[15] Michelin, S.; Llewellyn Smith, S. G., Falling cards and flapping flags: understanding fluid-solid interactions using an unsteady point vortex model, Theor. Comput. Fluid Dyn., 24, 195-200 (2010) · Zbl 1191.76074
[16] Hogg, N. G.; Stommel, H. M., The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow, Proc. R. Soc. Lond. Ser. A, 397, 1-20 (1985) · Zbl 0571.76017
[17] Reznik, G. M., Dynamics of singular vortices on a beta-plane, J. Fluid Mech., 240, 405-432 (1992) · Zbl 0756.76015
[18] Pismen, L. M., Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, From Non-Equilibrium Patterns to Cosmic Strings (1999), Oxford: Oxford Clarendon · Zbl 0987.76001
[19] Hirth, J. P.; Lothe, J., Theory of dislocations (1968), McGraw-Hill: McGraw-Hill New York
[20] Thomson, W.; Tait, P. G., Principles of Mechanics and Dynamics (1912), Cambridge University Press · Zbl 0122.18402
[21] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1959), Pergamon Press: Pergamon Press London · Zbl 0146.22405
[22] Sedov, L. I., Two-Dimensional Problems in Hydrodynamics and Aerodynamics (1965), Interscience Publishers: Interscience Publishers New York · Zbl 0131.40901
[23] Feynman, R. P.; Leighton, R. B.; Sands, M., The Feynman Lectures on Physics (1970), Addison-Wesley: Addison-Wesley Reading · Zbl 0131.38703
[24] Tritton, D. J., Physical Fluid Dynamics (1977), Van Nostrand Reinhold: Van Nostrand Reinhold Wokingham · Zbl 0383.76001
[25] Meleshko, V. V.; Aref, H., A bibliography of vortex dynamics 1858-1956, Adv. Appl. Mech., 41, 197-292 (2007)
[26] Kirchhoff, G., Vorlesungen Über Mathematische Physik (1876), Teubner: Teubner Leipzig · JFM 08.0542.01
[27] Routh, E. J., Some applications of conjugate functions, Proc. Lond. Math. Soc., 12, 73-89 (1881) · JFM 13.0720.01
[28] Aref, H.; Roenby, J.; Stremler, M. A.; Tophøj, L., Nonlinear excursions of particles in ideal 2D flows, Physica D, 240, 199-207 (2011) · Zbl 1372.76027
[29] Thomson, J. J., A Treatise on the Motion of Vortex Rings (1883), Macmillan: Macmillan London · JFM 15.0854.02
[30] Melander, M. V.; Zabusky, N. J.; McWilliams, J. C., Symmetric vortex merger in two dimensions: causes and conditions, J. Fluid Mech., 195, 303-340 (1988) · Zbl 0653.76020
[31] Basset, A. B., A Treatise on Hydrodynamics (1888), Deighton, Bell and Company: Deighton, Bell and Company London · JFM 20.0970.01
[32] Poincaré, H., Théorie Des Tourbillons (1893), Carré: Carré Paris · JFM 25.1896.04
[33] Zhukovskii, N. E., (Collected Papers. Collected Papers, Hydrodynamics, vol. II (1949), Gos. izd-vo tekhniko-teoret. lit-ry: Gos. izd-vo tekhniko-teoret. lit-ry Moscow Leningrad)
[34] Lamb, H., Hydrodynamics (1932), Cambridge University Press: Cambridge University Press Cambridge · JFM 26.0868.02
[35] Sommerfeld, A., Lectures on Theoretical Physics (1950), Academic: Academic New York · Zbl 0038.37107
[36] Milne-Thomson, L. M., Theoretical Hydrodynamics (1968), Macmillan: Macmillan London · Zbl 0164.55802
[37] Villat, H., Leçons Sur La Théorie Des Tourbillons (1930), Gauthier-Villars: Gauthier-Villars Paris · JFM 56.1247.14
[38] Ewald, P. P.; Pöschl, T.; Prandtl, L., The Physics of Solids and Fluids, With Recent Developments (1936), Blackie: Blackie London · JFM 56.1246.06
[39] Rouse, H., Fluid Mechanics for Hydraulic Engineers (1938), McGraw-Hill: McGraw-Hill New York
[40] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0152.44402
[41] Friedrichs, K., Special Topics in Fluid Dynamics (1966), Gordon and Breach: Gordon and Breach New York · Zbl 0212.58601
[42] Truesdell, C., The Kinematics of Vorticity (1954), Indiana University Press: Indiana University Press Bloomington · Zbl 0056.18606
[43] McVittie, G. C., Review of C. Truesdell, The kinematics of vorticity, Bull. Amer. Math. Soc., 61, 357-358 (1955)
[44] Kochin, N. E.; Kibel, I. A.; Roze, N. V., Theoretical Hydromechanics (1964), Interscience Publishers: Interscience Publishers New York · Zbl 0121.20301
[45] Sedov, L. I., A Course in Continuum Mechanics (1971), Wolters-Noordhoff: Wolters-Noordhoff Groningen · Zbl 0308.73005
[46] Kozlov, V. V., General Theory of Vortices (1998), Udmersk University Press: Udmersk University Press Izhevsk, (in Russian). Available at http://ics.org.ru/doc?book=6&dir=r
[47] A.V. Borisov, I.S. Mamaev, Mathematical methods in the dynamics of vortex structures, Institute of Computer Science, Moscow—Izhevsk, 2005. (in Russian). Available at: http://ics.org.ru/doc?book=16&dir=r; A.V. Borisov, I.S. Mamaev, Mathematical methods in the dynamics of vortex structures, Institute of Computer Science, Moscow—Izhevsk, 2005. (in Russian). Available at: http://ics.org.ru/doc?book=16&dir=r · Zbl 1119.76001
[48] (Borisov, A. V.; Kozlov, V. V.; Mamaev, I. S.; Sokolovisky, M. A., Proceedings of the IUTAM Symposium on Hamiltonian Dynamics. Proceedings of the IUTAM Symposium on Hamiltonian Dynamics, Moscow, 25-30 August, 2006. Proceedings of the IUTAM Symposium on Hamiltonian Dynamics. Proceedings of the IUTAM Symposium on Hamiltonian Dynamics, Moscow, 25-30 August, 2006, Vortex Structures,Turbulence (2008), Springer: Springer Dordrecht)
[49] Marchioro, C.; Pulvirenti, M., Vortex Methods in Two-Dimensional Fluid Dynamics (1984), Springer: Springer Berlin · Zbl 0545.76027
[50] Krasny, R., A vortex-dipole sheet model for a wake, Phys. Fluids A, 1, 173-175 (1989)
[51] Ting, L.; Klein, R., Viscous Vortical Flows (1991), Springer: Springer Berlin · Zbl 0748.76007
[52] Ting, L.; Klein, R.; Knio, O. M., Vortex Dominated Flows: Analysis and Computation for Multiple Scale Phenomena (2007), Springer: Springer Berlin · Zbl 1130.76002
[53] Saffman, P. G., Vortex Dynamics (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0777.76004
[54] Lighthill, M. J., An Informal Introduction to Theoretical Fluid Mechanics (1986), Clarendon Press: Clarendon Press Oxford · Zbl 0604.76002
[55] Chorin, A. J.; Marsden, J. E., A Mathematical Introduction to Fluid Mechanics (1993), Springer: Springer New York · Zbl 0712.76008
[56] Chorin, A. J., Vorticity and Turbulence (1994), Springer: Springer New York · Zbl 0795.76002
[57] Newton, P. K., The \(N\)-Vortex Problem: Analytical Techniques (2001), Springer: Springer New York · Zbl 0981.76002
[58] Meleshko, V. V.; Constantinov, M. Y., Dynamics of Vortical Structures (1993), Naukova dumka: Naukova dumka Kiev, (in Russian)
[59] Faber, T. E., Fluid Dynamics for Physicists (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0861.76001
[60] Majda, A.; Bertozzi, A. L., Vorticity and Incompressible Flow (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0983.76001
[61] Wu, J.-Z.; Ma, H.-Y.; Zhou, M.-D., Vorticity and Vortex Dynamics (2006), Springer: Springer Berlin
[62] Alekseenko, S. V.; Kuibin, P. A.; Okulov, V. L., Theory of Concentrated Vortices: An Introduction (2007), Springer: Springer Berlin · Zbl 1132.76001
[63] Graham, J. M.R., The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers, J. Fluid Mech., 97, 331-346 (1980)
[64] Fridman, A. A.; Polubarinova, P. Y., On moving singularities of a flat motion of an incompressible fluid, Geofiz. Sbornik, 9-23 (1928)
[65] Bogomolov, V. A., Motion of an ideal fluid of constant density in the presence of sinks, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 4, 21-27 (1976)
[66] Novikov, A. E.; Novikov, E. A., Vortex-sink dynamics, Phys. Rev. E, 54, 3681-3686 (1996)
[67] Borisov, A. V.; Mamaev, I. S., On the problem of motion of vortex sources on a plane, Regul. Chaotic Dyn., 11, 455-466 (2006) · Zbl 1164.37353
[68] Newton, P. K., The dipole dynamical system, Discrete Contin. Dyn. Syst., Suppl., 1-8 (2005) · Zbl 1142.76016
[69] Saffman, P. G.; Meiron, D. I., Difficulties with 3-dimensional weak solutions for inviscid incompressible-flow, Phys. Fluids, 29, 2373-2375 (1986) · Zbl 0601.76014
[70] Winckelmans, G.; Leonard, A., Weak solutions of the 3-dimensional vorticity equation with vortex singularities, Phys. Fluids, 31, 1838-1839 (1988) · Zbl 0643.76022
[71] Greengard, C.; Thomann, E., Singular vortex systems and weak solutions of the Euler equations, Phys. Fluids, 31, 2810-2813 (1988) · Zbl 0655.76019
[72] Chefranov, S. G., Problem of regularization of the proper energy of point vortex dipoles and the intensification of integral vorticity on extension of the vortex lines, Zh. Eksp. Teor. Fiz., 95, 547-561 (1989)
[73] Chefranov, S. G., Dynamics of point vortex dipoles and spontaneous singularities in 3-dimensional turbulent flows, Zh. Eksp. Teor. Fiz., 93, 151-158 (1987)
[74] Chefranov, S. G., Dynamics of point vortex quadrupoles and elliptic vortices on a plane, Zh. Eksp. Teor. Fiz., 99, 1149-1165 (1991)
[75] Yanovsky, V. V.; Tur, A. V.; Kulik, K. N., Singularities motion equations in 2-dimensional ideal hydrodynamics of incompressible fluid, Phys. Lett. A, 373, 2484-2487 (2009) · Zbl 1231.76064
[76] Kulik, K. N.; Tur, A. V.; Yanovsky, V. V., Interaction of point and dipole vortices in an incompressible liquid, Theoret. Math. Phys., 162, 383-400 (2010) · Zbl 1425.76049
[77] Agullo, O.; Verga, A., Effect of viscosity on the dynamics of two point vortices: exact results, Phys. Rev. E, 63, 056304 (2001) · Zbl 1256.76021
[78] Nagem, R.; Sandri, G.; Uminsky, D.; Wayne, C. E., Generalized Helmholtz-Kirchhoff model for two-dimensional distributed vortex motion, SIAM J. Appl. Dyn. Syst., 8, 160-179 (2009) · Zbl 1408.76205
[79] Grotta Ragazzo, C.; Koiller, J.; Oliva, W. M., On the motion of two-dimensional vortices with mass, J. Nonlinear Sci., 4, 375-418 (1994) · Zbl 0808.76015
[80] Ramodanov, S. M., On the motion of two mass vortices in a perfect fluid, (Borisov, A. V.; Kozlov, V. V.; Mamaev, I. S.; Sokolovisky, M. A., Proceedings of the IUTAM Symposium on Hamiltonian Dynamics. Proceedings of the IUTAM Symposium on Hamiltonian Dynamics, Moscow, 25-30 August, 2006. Proceedings of the IUTAM Symposium on Hamiltonian Dynamics. Proceedings of the IUTAM Symposium on Hamiltonian Dynamics, Moscow, 25-30 August, 2006, Vortex Structures,Turbulence (2008), Springer: Springer Dordrecht), 459-468 · Zbl 1207.76038
[81] Zabusky, N. J.; McWilliams, J. C., A modulated point-vortex model for geostrophic beta-plane dynamics, Phys. Fluids, 25, 2175-2182 (1982) · Zbl 0514.76018
[82] Barsony-Nagy, A.; Er-El, J.; Yungster, S., Compressible flow past a contour and stationary vortices, J. Fluid Mech., 178, 367-378 (1987)
[83] Legendre, R., Vortex sheets rolling-up along leading-edges of delta wings, Prog. Aerosp. Sci., 7, 7-33 (1966)
[84] Riley, N., Flows with concentrated vorticity: a report on EUROMECH 41, J. Fluid Mech., 62, 33-39 (1974) · Zbl 0268.76014
[85] Legendre, R., écoulement au voisinage de la pointe avant d’une aile à forte flèche aux incidences moyennes, La Rech. Aerosp., 3-8 (1952)
[86] Adams, M. C., Leading-edge separation from delta-wings at supersonic speeds, J. Aerosp. Sci., 430 (1953)
[87] Edwards, R. H., Leading-edge separation from delta-wings, J. Aerosp. Sci., 21, 134-135 (1954)
[88] Cheng, H. K., Remarks on nonlinear lift and vortex separation, J. Aerosp. Sci., 21, 212-214 (1954)
[89] Brown, C. E.; Michael, W. H., Effect of leading-edge separation on the lift of a delta-wing, J. Aerosp. Sci., 21, 690-694 (1954) · Zbl 0057.18005
[90] C.E. Brown, W.H. Michael, On slender delta wings with leading-edge separation, Technical Report NACA-TN-3430, NACA, 1955.; C.E. Brown, W.H. Michael, On slender delta wings with leading-edge separation, Technical Report NACA-TN-3430, NACA, 1955.
[91] Cheng, H. K., Aerodynamics of a rectangular plate with vortex separation in supersonic flow, J. Aerosp. Sci., 22, 217-226 (1955) · Zbl 0066.20502
[92] Rott, N., Diffraction of a weak shock with vortex generation, J. Fluid Mech., 1, 111-128 (1956) · Zbl 0071.20502
[93] Smith, J. H.B., Improved calculations of leading-edge separation from slender thin delta wings, Proc. R. Soc. Lond. Ser. A, 306, 67-90 (1968) · Zbl 0176.24602
[94] Pullin, D. I., Large-scale structure of unsteady self-similar rolled-up vortex sheets, J. Fluid Mech., 88, 401-430 (1978) · Zbl 0393.76018
[95] Howe, M. S., Emendation of the Brown & Michael equation, with application to sound generation by vortex motion near a half-plane, J. Fluid Mech., 329, 89-101 (1996) · Zbl 1002.76561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.