×

Stability of flows associated to gradient vector fields and convergence of iterated transport maps. (English) Zbl 1099.49027

Summary: We address the problem of stability of flows associated to a sequence of vector fields under minimal regularity requirements on the limit vector field, that is supposed to be a gradient. We apply this stability result to show the convergence of iterated compositions of optimal transport maps arising in the implicit time discretization (with respect to the Wasserstein distance) of nonlinear evolution equations of a diffusion type. Finally, we use these convergence results to study the gradient flow of a particular class of polyconvex functionals recently considered by Gangbo, Evans and Savin. We solve some open problems raised in their paper and obtain existence and uniqueness of solutions under weaker regularity requirements and with no upper bound on the Jacobian determinant of the initial datum.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agueh M. (2005) Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv Differential Equations 10, 309–360 · Zbl 1103.35051
[2] Ambrosio, L. Lecture notes on transport equation and cauchy problem for bv vector fields and applications. To appear in the proceedings of the School on Geometric Measure Theory, Luminy, October 2003, available at http://cvgmt.sns.it/people/ambrosio/ (2004)
[3] Ambrosio L. (2004) Transport equation and cauchy problem for bv vector fields. Inventiones Mathematicae 158, 227–260 · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[4] Ambrosio L., Crippa G., Maniglia S. (2005) Traces and fine properties of a BD class of vector fields and applications. Ann Fac Sci Toulouse Math. 14(6): 527–561 · Zbl 1091.35007
[5] Ambrosio L., Fusco N., Pallara D. (2000) Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. Clarendon Press, Oxford · Zbl 0957.49001
[6] Ambrosio L., Gigli N., Savaré G. (2005) Gradient flows – in metric spaces and in the space of probability measures. Birkhäuser, Basel · Zbl 1090.35002
[7] Aronson D.G., Bénilan P. (1979) Régularité des solutions de l’équation des milieux poreux dans R N . CR Acad Sci Paris Sér A-B 288, A103–A105 · Zbl 0397.35034
[8] Bouchut F., James F. (1998) One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal 32, 891–933 · Zbl 0989.35130 · doi:10.1016/S0362-546X(97)00536-1
[9] Bouchut F., James F., Mancini S. (2005) Uniqueness and weak stability for multi-dimensional transport equations with one-sided lipschitz coefficient. Annali SNS 4(5): 1–25 · Zbl 1170.35363
[10] Brenier Y. (1991) Polar factorization and monotone rearrangement of vector-valued. Comm Pure Appl Math 44, 375–417 · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[11] Brézis H., Crandall M.G. (1979) Uniqueness of solutions of the initial-value problem for \(u_{t}-\Delta \varphi (u)=0\) . J Math Pures Appl 58(9): 153–163 · Zbl 0408.35054
[12] Brézis H., Strauss W.A. (1973) Semi-linear second-order elliptic equations in L 1. J Math Soc Jpn, 25, 565–590 · Zbl 0278.35041 · doi:10.2969/jmsj/02540565
[13] Caffarelli L.A. (1991) Some regularity properties of solutions of Monge Ampère equation. Comm Pure Appl Math 44, 965–969 · Zbl 0761.35028 · doi:10.1002/cpa.3160440809
[14] Caffarelli L.A. (1992) Boundary regularity of maps with convex potentials. Comm Pure Appl Math 45, 1141–1151 · Zbl 0778.35015 · doi:10.1002/cpa.3160450905
[15] Caffarelli L.A. (1992) The regularity of mappings with a convex potential. J Am Math Soc 5, 99–104 · Zbl 0753.35031 · doi:10.1090/S0894-0347-1992-1124980-8
[16] Caffarelli L.A. (1996) Boundary regularity of maps with convex potentials. II. Ann Math 144(2): 453–496 · Zbl 0916.35016 · doi:10.2307/2118564
[17] Caffarelli L.A., Friedman A. (1979) Continuity of the density of a gas flow in a porous medium. Trans Am Math Soc 252, 99–113 · Zbl 0425.35060 · doi:10.1090/S0002-9947-1979-0534112-2
[18] Crandall M.G., Liggett T.M. (1971) Generation of semi-groups of nonlinear transformations on general Banach spaces. Am J Math 93, 265–298 · Zbl 0226.47038 · doi:10.2307/2373376
[19] DiBenedetto E. (1983) Continuity of weak solutions to a general porous medium equation. Indiana Univ Math J 32, 83–118 · Zbl 0526.35042 · doi:10.1512/iumj.1983.32.32008
[20] DiBenedetto, E. Degenerate parabolic equations. Universitext, Springer Berlin Heidelberg, New York 1993 · Zbl 0794.35090
[21] DiPerna R.J., Lions P.-L. (1989) Ordinary differential equations, transport theory and Sobolev spaces. Invent Math 98, 511–547 · Zbl 0696.34049 · doi:10.1007/BF01393835
[22] Evans, L.C. Partial differential equations and Monge-Kantorovich mass transfer. In: Cambridge MA (Ed.) Current developments in mathematics, 1997. Int Press Boston, 65–126 1999
[23] Evans L.C., Savin O., Gangbo W. (2005) Diffeomorphisms and nonlinear heat flows. SIAM J Math Anal 37, 737–751 (electronic) · Zbl 1096.35061 · doi:10.1137/04061386X
[24] Friedman, A. Variational principles and free-boundary problems. Pure and Applied Mathematics. Wiley, New York. A Wiley-Interscience Publication 1982 · Zbl 0564.49002
[25] Gangbo W., McCann R.J. (1996) The geometry of optimal transportation. Acta Math 177, 113–161 · Zbl 0887.49017 · doi:10.1007/BF02392620
[26] Giaquinta, M., Modica, G., Souček, J. Cartesian currents in the calculus of variations. I. vol. 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A series of modern surveys in mathematics [Results in mathematics and related areas. 3rd series. A series of modern surveys in mathematics], Springer, Berlin Heidelberg New York. Variational integrals 1998
[27] Hauray M. (2003) On two-dimensional Hamiltonian transport equations with \(L^P_{\mathrm loc}\) coefficients. Ann Inst H Poincaré Anal Non Linéaire 20, 625–644 · Zbl 1028.35148 · doi:10.1016/S0294-1449(02)00015-X
[28] Hauray M. (2004) On Liouville transport equation with force field in BV loc. Comm Partial Differential Equations 29, 207–217 · Zbl 1103.35003 · doi:10.1081/PDE-120028850
[29] Jordan R., Kinderlehrer D., Otto F. (1998) The variational formulation of the Fokker-Planck equation. SIAM J Math Anal 29, 1–17 (electronic) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[30] Ladyženskaja, O.A., Solonnikov, V.A., Ural’cevaceva, N.N. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, R.I. 1967.
[31] Le Bris C., Lions P.-L. (2004) Renormalized solutions of some transport equations with partially W 1,1 velocities and applications. Ann Mat Pura Appl 183(4): 97–130 · Zbl 1170.35364 · doi:10.1007/s10231-003-0082-4
[32] Lerner N. (2004) Transport equations with partially BV velocities. Ann Sci Norm Super Pisa Cl Sci 3(5): 681–703 · Zbl 1170.35362
[33] Lieberman G.M. (1986) Intermediate Schauder theory for second order parabolic equations. I. Existence, uniqueness, and regularity. J Differential Equations 63, 32–57 · Zbl 0553.35038 · doi:10.1016/0022-0396(86)90053-7
[34] McCann R.J. (1997) A convexity principle for interacting gases. Adv Math 128, 153–179 · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[35] Otto, F. Doubly degenerate diffus ion equations as steepest descent. Manuscript (1996)
[36] Otto F. (1999) Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm Pure Appl Math 52, 873–915 · Zbl 0929.76136 · doi:10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T
[37] Otto F. (2001) The geometry of dissipative evolution equations: the porous medium equation. Comm Partial Differential Equations 26, 101–174 · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[38] Porzio M.M., Vespri V. (1993) Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J Differential Equations 103, 146–178 · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[39] Poupaud F., Rascle M. (1997) Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm Partial Differential Equations 22, 337–358 · Zbl 0882.35026 · doi:10.1080/03605309708821265
[40] Urbas J.I.E. (1988) Global Hölder estimates for equations of Monge-Ampère type. Invent Math 91, 1–29 · Zbl 0674.35026 · doi:10.1007/BF01404910
[41] Urbas J.I.E. (1988) Regularity of generalized solutions of Monge-Ampère equations. Math Z 197, 365–393 · Zbl 0617.35017 · doi:10.1007/BF01418336
[42] Villani C. (2003) Topics in optimal transportation. vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence · Zbl 1106.90001
[43] Ziemer W.P. (1982) Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans Am Math Soc 271, 733–748 · Zbl 0506.35053 · doi:10.1090/S0002-9947-1982-0654859-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.