×

A two-director Cosserat rod model using unconstrained quaternions. (English) Zbl 1406.74383

Summary: Starting from a constrained three-dimensional analysis, we propose a new model for an initially curved Cosserat rod with two independent directors, in which the cross-section can inflate and ovalize. The usage of unconstrained quaternions gets rid of the non-linear constraints and singularities in the parametrization of objective strains, related to the orthonormality of rotation matrices. Furthermore, the classic definitions of curvatures and twist have been modified and tuned for a linear constitutive law (i.e. a linear relationship between one-dimensional stresses and strains). The capabilities and the limitations of the model in describing the non-linear effects of cross-section deformation on bending and torsion, and usually handled with bi- and three-dimensional theories, are then discussed.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B20 Nonlinear elasticity
74A05 Kinematics of deformation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antman, S. S., Nonlinear problems of elasticity, (2005), Springer · Zbl 1098.74001
[2] Brazier, L. G., On the flexure of thin cylindrical shells and other “thin” sections, Proc. R. Soc. Lond. Ser. A, 116, 773, 104-114, (1927) · JFM 53.0758.03
[3] Capriz, G., A contribution to the theory of rods, Riv. Mat. Univ. Parma, 4, 489-506, (1981) · Zbl 0584.73066
[4] Cardona, A.; Geradin, M., A beam finite element non-linear theory with finite rotations, Int. J. Numer. Methods Eng., 26, 11, 2403-2438, (1988) · Zbl 0662.73049
[5] Cohen, H., A non-linear theory of elastic directed curves, Int. J. Eng. Sci., 4, 5, 511-524, (1966)
[6] Crisfield, M. A.; Jelenic, G., Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 455, 1983, 1125-1147, (1999) · Zbl 0926.74062
[7] Dasambiagio, E. R.; Pimenta, P. M.; Campello, E. M.B., A finite strain rod model that incorporates general cross section deformation and its implementation by the finite element method, (da Costa Mattos, H. S.; Alves, Marcilio, Solid Mechanics in Brazil 2009, (2009))
[8] Geradin, M.; Cardona, A., Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra, Comput. Mech., 4, 2, 115-135, (1989) · Zbl 0666.73014
[9] Gere, J. M.; Timoshenko [posth.], S., Mechanics of materials, (1985), PWS Engineering
[10] Ghosh, S.; Roy, D., Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam, Comput. Methods Appl. Mech. Eng., 198, 555-571, (2008) · Zbl 1228.74079
[11] Goldman, R., Rethinking quaternions: theory and computation, (2010), Morgan & Claypool · Zbl 1243.68003
[12] Goto, Y.; Li, X.-S.; Kasugai, T., Buckling analysis of elastic space rods under torsional moment, J. Eng. Mech., 122, 9, 826-833, (1996)
[13] Gould, T.; Burton, D. A., A cosserat rod model with microstructure, New J. Phys., 8, 137, (2006)
[14] Green, A. E.; Laws, N., A general theory of rods, Proc. of the R. Soc. Lond. Ser. A. Math. Phys. Sci., 293, 1433, 145-155, (1966)
[15] Healey, T. J.; Mehta, P. G., Straightforward computation of spatial equilibria of geometrically exact Cosserat rods, Int. J. Bifurc. Chaos, 15, 03, 949-965, (2005) · Zbl 1081.74026
[16] Ibrahimbegovic, A.; Frey, F.; Kozar, I., Computational aspects of vector-like parametrization of three-dimensional finite rotations, Int. J. Numer. Methods Eng., 38, 21, 3653-3673, (1995) · Zbl 0835.73074
[17] Karamanos, S. A., Bending instabilities of elastic tubes, Int. J. Solids Struct., 39, 8, 2059-2085, (2002) · Zbl 1051.74569
[18] Kumar, A.; Mukherjee, S., A geometrically exact rod model including in-plane cross-sectional deformation, J. Appl. Mech., 78, 1, 011010, (2011)
[19] Kumar, Ajeet; Mukherjee, Subrata; Paci, Jeffrey T.; Chandraseker, Karthick; Schatz, George C., A rod model for three dimensional deformations of single-walled carbon nanotubes, Int. J. Solids Struct., 48, 20, 2849-2858, (2011)
[20] Mihai, L. Angela; Goriely, Alain, Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalised empirical inequalities in non-linear elasticity, Int. J. Non-linear Mech., 49, 0, 1-14, (2013)
[21] Podio Guidugli, P., Flexural instabilities of elastic rods, J. Elast., 12, 3-17, (1982) · Zbl 0491.73050
[22] Poynting, J. H., On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted, Proc. R. Soc. Lond. Ser. A, 82, 557, 546-559, (1909) · JFM 40.0875.02
[23] Reissner, E., On one-dimensional large-displacement finite-strain beam theory, Stud. Appl. Math., 52, 87-95, (1973) · Zbl 0267.73032
[24] Reissner, E., On finite deformations of space-curved beams, Z. Angew. Math. Phys. (ZAMP), 32, 734-744, (1981) · Zbl 0467.73048
[25] Ritto-Correa, M.; Camotim, D., On the differentiation of the rodrigues formula and its significance for the vector-like parameterization of Reissner-simo beam theory, Int. J. Numer. Methods Eng., 55, 9, (2002) · Zbl 1033.74027
[26] Rivlin, R. S.; Barenblatt, G. I.; Joseph, D. D., Collected Papers of R.S. RIvlin, vol. 1, (1997), Springer
[27] Romero, I., The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech., 34, 121-133, (2004) · Zbl 1138.74406
[28] Rubin, M. B., Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point, Int. J.Solids Struct., 38, 4395-4437, (2001) · Zbl 1040.74030
[29] Silvestre, N., On the accuracy of shell models for torsional buckling of carbon nanotubes, Eur. J. Mech. A/Solids, 32, 103-108, (2012) · Zbl 1278.74115
[30] Simo, J. C., A finite strain beam formulation. the three-dimensional dynamic problem. part I, Comput. Methods Appl. Mech. Eng., 49, 1, 55-70, (1985) · Zbl 0583.73037
[31] Simo, J. C.; Vu-Quoc, L., A three-dimensional finite-strain rod model. part II: computational aspects, Comput. Methods Appl. Mech. Eng., 58, 79-116, (1986) · Zbl 0608.73070
[32] Smolenski, W. M., Statically and kinematically exact nonlinear theory of rods and its numerical verification, Comput. Methods Appl. Mech. Eng., 178, 1-2, 89-113, (1998) · Zbl 0972.74040
[33] Upmanyu, M.; Wang, H. L.; Liang, H. Y.; Mahajan, R., Strain-dependent twist-stretch elasticity in chiral filaments, J.R. Soc. Interf., 5, 20, 303-310, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.