×

zbMATH — the first resource for mathematics

Gaussian stochastic processes. (English. Russian original) Zbl 0516.60046
J. Sov. Math. 23, 2599-2626 (1983); translation from Itogi Nauki Tekh., Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern. 19, 155-199 (1982).

MSC:
60G15 Gaussian processes
60G17 Sample path properties
60G60 Random fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yu. K. Belyaev, ?On the unboundedness of sample functions of Gaussian processes,? Teor. Veroyatn. Primen.,3, No. 3, 351?354 (1958).
[2] Yu. K. Belyaev, ?On the number of level crossings by a Gaussian stochastic process. II,? Teor. Veroyatn. Primen.,12, No. 3, 444?457 (1967). · Zbl 0162.21201
[3] Yu. K. Belyaev and V. I. Piterbarg, ?Asymptotics of the mean number of A-points of crossings of a Gaussian field beyond a high level,? Dokl. Akad. Nauk SSSR,203, No. 1, 9?12 (1972). · Zbl 0293.60032
[4] Yu. K. Belyaev and A. Kh. Simonyan, ?Asymptotic properties of the deviations of the realization of a Gaussian process from an approximating broken line with reduction of the step size of quantization,? in: Sluch, Protsessy i Polya [in Russian], Moscow (1979), pp. 9?21.
[5] S. Berman, ?Sojourn times and extrema of Gaussian processes,? in: Stochastic Processes [in Russian], Moscow (1978), pp. 164?203.
[6] M. G. Bilyk, ?Statistical properties of level crossings of a periodically nonstationary process and a periodically inhomogeneous field,? Otbor i Peredacha Inform., Resp. Mezhved., Sb., No. 52, 3?8 (1977).
[7] M. G. Bilyk, ?Some properties of the extrema of a nonstationary Gaussian process,? Otbor i Peredacha Inf. (Kiev), No. 56, 13?17 (1979).
[8] V. V. Buldygin, Convergence of Random Elements in Topological Spaces [in Russian], Naukova Dumka, Kiev (1980). · Zbl 0512.60009
[9] N. N. Vakhaniya, ?On the correspondence between the concepts of a Gaussian measure and a Gaussian process,? Mat. Zametki,26, No. 2, 293?297 (1979).
[10] A. D. Venttsel’ and M. I. Freidlin, Fluctuations in Dynamical Systems Under the Action of Small Random Perturbations [in Russian], Nauka, Moscow (1979).
[11] V. A. Volkonskii and Yu. A, Rozanov, ?Some limit theorems for random functions. I,? Teor. Veroyatn. Primen.,4, No. 2, 186?207 (1959).
[12] N. A. Geodakov, ?The local Markov property of stationary Gaussian processes,? Teor. Veroyatn. Primen.,24, No. 4, 854?858 (1979). · Zbl 0416.60042
[13] N. A. Geodakov, ?The local Markov property of processes of class (2k+1),? Upr., Nadezhnost’ i Navigatsiya (Saransk), No. 5, 165?168 (1979).
[14] H. H. Kuo, Gaussian Measures in Banach Spaces, Springer-Verlag (1975), · Zbl 0306.28010
[15] V. V. Gorodetskii, ?The invariance principle for functions of stationary, connected Gaussian variables,? Probl. Teor. Veroyatn. Raspredelenii, VI, Leningrad (1980), pp. 32?44.
[16] Yu. A. Davydov, ?Local times for multiparameter stochastic processes,? Teor. Veroyatn. Primen.,23, No. 3, 594?605 (1978).
[17] R. M. Dudley, ?Sample functions of a Gaussian process,? in: Sluchain. Protsessy, Moscow (1978), pp. 7?62.
[18] V. A. Dmitrovskii, ?Estimate s of the distribution of the maximum of a Gaussian Field,? in: Sluch. Protsessy i Polya [in Russian], Moscow (1979), pp. 22?31.
[19] V. A. Dmitrovskii, ?Boundedness conditions and estimates of the distribution of the maximum of random fields on arbitrary sets,? Dokl. Akad. Nauk SSSR,253, No. 2, 271?274 (1980).
[20] N. M. Zinchenko, ?On the p-variation of Gaussian random fields,? Teor. Veroyatn. Mat. Stat., Resp. Mezhved. Nauch. Sb., No. 19, 72?76 (1978). · Zbl 0407.60057
[21] I. A. Ibragimov, ?On the probability of a Gaussian vector with values in a Hilbert space entering a sphere of small radius,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,85, 75?93 (1979).
[22] I. A. Ibragimov and Yu. A. Rozanov, Gaussian Stochastic Processes [in Russian], Nauka, Moscow (1970).
[23] V. D. Konakov, ?An estimate of the rate of convergence of the distribution of the maximum modulus of a nondifferentiable Gaussian process,? in: Mnogomern. Stat. Analiz, Mat. Obespech., Moscow (1975), pp. 101?115. · Zbl 0483.60025
[24] V. D. Konakov, ?Asymptotic expansions for the probability of large deviations of Gaussian stationary sequences,? in: Mnogomern. Stat. Analiz, Mat. Obespech., Moscow (1979), pp. 116?121.
[25] V. D. Konakov and V. I. Piterbarg, ?Large deviations of Gaussian processes and empirical densities,? Teor. Veroyatn. Primen.,3, 658?659 (1979).
[26] G. Cramer and M. R. Lidbetter, Stationary Stochastic Processes [Russiantranslation], Mir, Moscow (1969).
[27] M. A. Lifshits, ?Local times for Gaussian processes,? Teor. Veroyatn. Primen.,23, No. 4, 867?868 (1978).
[28] M. A. Lifshits, ?Transport of a measure by trajectories of a stationary Gaussian process,? Teor. Veroyatn. Primen.,24, No. 2, 432 (1979).
[29] M. A. Lifshits, ?On the representation of Levy fields by indicators,? Teor. Veroyatn. Primen.,24, No. 3, 624?628 (1979). · Zbl 0438.60045
[30] M. A. Lifshits, ?Local times for functions and Gaussian processes,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,85, 104?112 (1979).
[31] T. L. Malevich, ?On the probability of finding a stationary Gaussian process above the zero level,? in: Veroyatnostn. Protessy i Mat. Stat., Tashkent (1978), pp. 79?87.
[32] T. L. Malevich, ?On conditions for the finiteness of the moments of the number of zeros of stationary Gaussian processes,? Teor. Veroyatn. Primen.,24, No. 4, 741?753 (1979).
[33] T. L. Malevich and L. N. Volodina, ?Inequalities for the moments of the number of zeros of a stationary Gaussian process. I,? Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat., No. 5, 30?36 (1978).
[34] T. L. Malevich and L. N. Volodina, ?Inequalities for the moments of the number of zeros of a stationary Gaussian process. II,? Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 2, 29?33 (1979).
[35] T. L. Malevich and N. Toshov, ?On the boundaries of the maximum of a homogeneous Gaussian field,? Teor. Veroyatn. Mat. Stat. (Kiev), No. 20, 76?90 (1979). · Zbl 0433.60040
[36] T. L. Malevich and N. Toshov, ?On the asymptotic behavior of the maximum of Gaussian processes and fields,? Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 6, 8?10 (1977).
[37] T. L. Malevich and N. Toshov, ?On the maximum of a nonstationary Gaussian process,? in: Veroyatnostn. Protsessy i Mat. Stat., Tashkent (1978), pp. 88?95.
[38] V. A. Malyshev, ?Cluster expansions and lattice models of statistical physics and quantum field theory,? Usp. Mat. Nauk,35, No. 2, 3?53 (1980).
[39] G. V. Martynov, ?Computation of a function of the normal distribution,? Itogi Nauki i Tekh. VINITI. Teoriya Veroyatnostei. Mat. Stat. Teor. Kibernet.,17, 57?84 (1979).
[40] I. K. Matsak, ?Regularity of sample functions of a stochastic process,? Ukr. Mat. Zh.,30, No. 2, 241?247 (1978). · Zbl 0419.60041
[41] I. K. Matsak, ?Asymptotic properties of Gaussian processes,? Ukr. Mat. Zh.,32, No. 3, 332?339 (1980). · Zbl 0448.60027
[42] R. N. Miroshin, ?Conditions for the finiteness of the moments of the number of zeros for stationary Gaussian processes,? Teor. Veroyatn. Primen.,22, No. 3, 631?641 (1977).
[43] R. N. Miroshin, ?Conditions of local regularity for differentiable Gaussian processes,? Teor. Veroyatn. Primen.,22, No. 4, 851?856 (1977). · Zbl 0388.60038
[44] R. N. Miroshin, ?A sufficient condition for local regularity of first order for stationary Gaussian processes,? Vestn. Leningr. Gos. Univ., No. 7, 98?106 (1978).
[45] R. N. Miroshin, ?Markov and recurrent stationary Gaussian processes of second order,? Teor. Veroyatn. Primen.,24, No. 4, 847?853 (1979). · Zbl 0419.60034
[46] R. N. Miroshin, ?On conditions of local regularity and the finiteness of moments of the number of zeros for a differentiable stationary Gaussian process,? Vestn. Leningr. Gos. Univ., No. 7, 83?92 (1980). · Zbl 0441.60041
[47] S. A. Molchanov and A. K. Stepanov, ?Bursts of a Gaussian field over a high level,? Dokl. Akad. Nauk SSSR,249, No. 2, 294?297 (1979).
[48] S. A. Molchanov and A. K. Stepanov, ?The estimate of V. A. Malyshev for the moments of Wick polynomials and some of its applications,? in: Sluch. Protessy i Polya [in Russian], Moscow (1979), pp. 39?48.
[49] G. A. Nesenenko and Yu. N. Tyurin, ?Asymptotics of the Kolmogorov statistics for a nonparameteric family,? Dokl. Akad. Nauk SSSR,239, No. 6, 1292?1294 (1978).
[50] V. P. Nosko, ?On the definition of the number of crossings of a random field beyond a fixed level,? Teor. Veroyatn. Primen.,24, No. 3, 592?596(1979).
[51] E. I. Ostrovskii, ?Monotonicity of Gaussian operators,? in: Sluch. Protessy i Polya [in Russian], Moscow (1979), pp. 54?61.
[52] V. I. Piterbarg, ?Some directions in the investigation of properties of the trajectories of Gaussian random functions, appendix-survey,? Sluchain. Protsessy [in Russian], Moscow (1978), pp. 258?280.
[53] V. I. Piterbarg, ?Asymptotic expansions for the probabilities of large deviations of Gaussian processes,? Dokl. Akad. Nauk SSSR,242, No. 6, 1248?1251 (1978).
[54] V. I. Piterbarg, ?Refinement of the limit theorem for the maximum of a stationary Gaussian process,? Sluch. Protsessy i Polya [in Russian], Moscow (1979), pp. 62?70.
[55] V. I. Piterbarg, ?Asymptotic expansions in the Poisson limit theorem for large deviations of a stationary Gaussian sequence,? Mat. Zametki,29, No. 1, 131?144 (1980).
[56] V. I. Piterbarg, ?The Poisson limit theorem for large deviations of a Gaussian sequence,? Dokl. Akad. Nauk SSSR,257, No. 1, 48?50 (1981). · Zbl 0477.60028
[57] V. I. Piterbarg and V. P. Prisyazhnyuk, ?Asymptotics of the probability of large deviation for a nonstationary Gaussian process,? Teor. Veroyatn. Mat. Stat., Resp. Mezhved. Nauch. Sb., No. 18, 121?134 (1978). · Zbl 0433.60030
[58] A. Plikunas, ?Estimates of semiinvariants and large deviations for certain nonlinear transformations of a stationary Gaussian process,? Lit. Mat. Sb.,20, No. 2, 119?128 (1980).
[59] Yu. A. Rozanov, Markov Random Fields [in Russian], Nauka, Moscow (1981). · Zbl 0463.60047
[60] A. A. Rusakov, ?Asymptotic estimates of the probability of deviation of integrals of weakly correlated Gaussian processes,? Sluch. Protsessy i Polya [in Russian], Moscow (1979), pp. 78?83.
[61] O. V. Seleznev, ?Approximation of periodic Gaussian processes by trigonometric polynomials,? Dokl. Akad. Nauk SSSR,250, No. 1, 35?38 (1980). · Zbl 0445.60030
[62] O. V. Seleznev, ?On the approximation of continuous periodic Gaussian processes by random trigonometric polynomials,? Sluch. Protsessy i Polya [in Russian], Moscow (1979), pp. 84?94.
[63] A. Kh. Simonyan, ?On the probability of deviation of a Gaussian random process from an approximating random curve,? Dokl. Akad. Nauk Arm. SSR,66, No. 2, 84?90 (1978).
[64] V. F. Sinyavskii, ?A lower bound for the modulus of continuity of homogeneous random Gaussian fields,? in: Veroyatnostnye Raspredeleniya v Beskonechnomern. Prostranstvakh, Kiev (1978), pp. 135?143.
[65] V. F. Sinyavskii, ?An upper bound for the modulus of continuity of sample functions of homogeneous Gaussian random fields,? Teor. Veroyatn. Mat. Stat., No. 21, 148?152 (1979).
[66] V. F. Sinyavskii, ?On the modulus of continuity of sample functions of homogeneous Gaussian random fields,? Dokl. Akad. Nauk Ukr. SSR, A, No. 2, 22?24 (1980).
[67] V. F. Sinyavskii, ?Conditions for the discontinuity of sample functions of homogeneous Gaussian random fields,? Teor. Veroyatn. Mat. Stat. (Kiev), No. 22, 131?135 (1980).
[68] Yu. K. Belyaev (ed.), Stochastic Processes. Sample Functions and Intersections [Russian translation] (a collection of papers), Mir, Moscow (1978).
[69] V. N. Sudakov, ?Gaussian random processes and measures of solid angles in Hilbert space,? Dokl. Akad. Nauk SSSR,197, No. 1, 43?45 (1971). · Zbl 0231.60025
[70] V. N. Sudakov, ?Geometric problems of the theory of infinite-dimensional probability distributions,? Tr. Mat. Inst. Akad. Nauk SSSR,141 (1976). · Zbl 0409.60005
[71] G. N. Sytaya, ?On small spheres of Gaussian measures,? in: Probability Distributions in Infinite-Dimensional Spaces [in Russian], Kiev (1978), pp. 154?171.
[72] N. Toshov, ?On asymptotic normality of surpassing Zn-characteristics of a stationary Gaussian process,? Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 2, 27?31 (1978).
[73] X. Fernique, ?Regularity of the trajectories of Gaussian random functions,? Sluchain. Protsessy [in Russian], Moscow (1978), pp. 63?122.
[74] I. A. Khalidov, ?Gaussian recurrent random processes,? Redkol. Zh. Vestn. Leningr. Gos. Univ., Mat., Mekh., Astron., Leningrad (1979).
[75] U. Tsele, ?Asymptotic behavior of the flow of rare events of a Gaussian field,? Dokl. Akad. Nauk SSSR,249, No. 3, 562?565 (1979).
[76] U. Tsele, ?The Poisson limit theorem for rare events of a Gaussian sequence,? Teor. Veroyatn. Primen.,25, No. 1, 92?104 (1980).
[77] B. S. Tsirel’son, ?The density of the distribution of the maximum of a Gaussian process,? Teor. Veroyatn. Primen.,20, No. 4, 865?873 (1975).
[78] M. I. Yadrenko, Spectral Theory of Random Fields [in Russian], Vishcha Shkola, Kiev (1980). · Zbl 0441.60055
[79] R. J. Adler, ?Distribution results for the occupation measures of continuous Gaussian fields,? Stochast. Process. Appl.,7, No. 3, 299?310 (1978). · Zbl 0384.60036
[80] R. J. Adler, ?On the envelope of a Gaussian random field,? J. Appl. Probab.,15, No. 3, 502?513 (1978). · Zbl 0388.60053
[81] S. M. Berman, ?A law of large numbers for the maximum in a stationary Gaussian sequence,? Ann. Math. Stat.,33, No. 1, 93?97 (1962). · Zbl 0109.11803
[82] S. M. Berman, ?Limit theorems for the maximum term in stationary sequences,? Ann. Math. Stat.,35, No. 2, 502?516 (1964). · Zbl 0122.13503
[83] S. M. Berman, ?Asymptotic independence of the numbers of high and low level crossings of stationary Gaussian processes,? Ann. Math. Stat.,42, No. 3, 927?945 (1971). · Zbl 0218.60038
[84] S. M. Berman, ?A new kind of tightness of probability measures and its applications to integral functionals of stochastic processes,? Z. Wahr. Verw. Geb.,42, No. 2, 155?165 (1978). · Zbl 0362.60051
[85] S. M. Berman, ?Gaussian processes with biconvex covariances,? J. Multivar. Anal.,8, No. 1, 30?44 (1978). · Zbl 0373.60050
[86] S. M. Berman, ?High level sojourns for strongly dependent Gaussian processes,? Z. Wahr. Verw. Geb.,50, No. 2, 223?236 (1979). · Zbl 0421.60033
[87] S. M. Berman, ?A compound Poisson limit for stationary sums and sojourns of Gaussian processes,? Ann. Probab.,8, No. 3, 511?538 (1980). · Zbl 0439.60019
[88] S. M. Berman, ?Isotropic Gaussian processes on the Hilbert sphere,? Ann. Probab.,8, No. 6, 1093?1106 (1980). · Zbl 0452.60045
[89] J. Cuzick, ?A lower bound for the prediction error of stationary Gaussian processes,? Indiana Univ. Math. J.,26, No. 3, 577?584 (1977). · Zbl 0367.60040
[90] J. Cuzick, ?Some local properties of Gaussian vector fields,? Ann. Probab.,6, No. 6, 984?994 (1978). · Zbl 0395.60038
[91] J. Cuzick, ?The Hausdorff dimension of the level sets of a Gaussian vector field,? Z. Wahr. Verw. Geb.,51, No. 3, 287?290 (1980). · Zbl 0421.60051
[92] J. Cuzick and G. Lingren, ?Frequency estimation from crossings of an unknown level,? Biometrika,67, No. 1, 65?72 (1980). · Zbl 0424.62060
[93] L. P. Davies, ?The exact Hausdorff measure of the zero set of certain stationary Gaussian processes,? Ann. Probab.,5, No. 5, 740?755 (1977). · Zbl 0375.60043
[94] J. Delporte, ?Fonctions aléatoires presque surement continues sur un intervalle fermé,? Ann. Inst. H. Poincaré,B1, No. 2, 8?215 (1964). · Zbl 0138.10701
[95] J. De Mare, ?The behavior of a nondifferentiable stationary Gaussian process after a level crossing,? Stochast. Processes Appl.,6, No. 1, 77?86 (1977). · Zbl 0364.60061
[96] J. Diebolt, ?Sur la loi du maximum de certains processus gaussiens sur le tore,? C. R. Acad. Sci.,AB290, No. 19, A913-A915 (1980). · Zbl 0453.60042
[97] R. L. Dobrushin and P. Major, ?Noncentral limit theorems for nonlinear functionals of Gaussian fields,? Z. Wahr. Verw. Geb.,50, No. 1, 27?52 (1979). · Zbl 0397.60034
[98] R. M. Dudley, ?The sizes of compact subsets of Hilbert space and continuity of Gaussian processes,? J. Funct. Anal.,1, No. 3, 290?330 (1967). · Zbl 0188.20502
[99] R. M. Dudley, ?Lower layers in R2 and convex sets in R3 are not GB classes,? Lect. Notes Math.,709, 97?102 (1979). · Zbl 0398.60005
[100] X. Fernique, ?Evaluations des processus gaussiens,? Symp, Math. Iust. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 91?100. · Zbl 0393.60037
[101] X. Fernique, ?Characterisation de processus a trajectoires majorées ou continues,? Lect. Notes Math.,649, 691?706 (1978). · Zbl 0394.60043
[102] X. Fernique, ?Random functions and Orlicz’s method of regularity of paths and limit properties,? Lect. Notes Math.,656, 31?36 (1978). · Zbl 0393.60038
[103] W, Fieger, ?Die Anzahl der Kreuzungspunkte einer Funktion mit einem Gausschen Prozess,? Trans. 7th Prague Conf. Inform. Theory, Statist. Decision Funct., Random Processes and 1974 Eur. Meet. Statist., Prague, 1974, Vol. A, Prague (1977), pp. 135?146.
[104] H. V. Hebbar, ?Almost sure limit points of maxima of stationary Gaussian sequences,? Ann. Probab.,8, No. 2, 393?399 (1980). · Zbl 0428.60041
[105] J. Hoffmann-Jorgensen, L. A. Shepp, and R. M. Dudley, ?On the lower tail of Gaussian seminorms,? Prepr. Ser. Mat. Inst. Aarhus Univ., 1976?1977, No. 40 (1977).
[106] J. Hoffmann-Jorgensen, L. A. Shepp, and R. M. Dudley, ?On the lower tail of Gaussian seminorms,? Ann. Probab.,7, No. 2, 319?342 (1979). · Zbl 0424.60041
[107] J. Husler, ?On limit distributions of first crossing point of Gaussian sequences,? Stochast. Processes and Appl.,6, No. 1, 65?75 (1977). · Zbl 0369.60028
[108] J. Husler, ?Almost sure limiting behavior of first crossing points of Gaussian sequences,? Stochast. Processes and Appl.,8, No. 3, 315?321 (1979). · Zbl 0399.60031
[109] Chii-Ruey Hwang, ?Gaussian measure of large balls in a Hilbert space,? Proc. Am. Math. Soc.,78, No. 1, 107?110 (1980). · Zbl 0393.60009
[110] R. Jaimez and Takayuki Kawada, ?A comparison theorem of Marcus-Shepp in the uniform continuity of Gaussian processes,? Trab. Estadist. Invest. Oper.,30, No. 1, 83?88 (1979). · Zbl 0439.60030
[111] N. C. Jain and M. B. Marcus, ?Continuity of subgaussian processes,? Probab. Banach Spaces, New York-Basel (1978), pp. 81?196.
[112] O. Kallenberg, ?Characterization and convergence of random measures and point processes,? Z. Wahr. Verw. Geb.,27, No. 1, 9?21 (1973). · Zbl 0253.60037
[113] Takayuki Kawada, ?Maximum in the Levy-Baxter theorem for Gaussian random fields,? Ann. Probab.,7, No. 1, 173?178 (1979). · Zbl 0392.60045
[114] N. Kono, ?Holder conditions for the local times of certain Gaussian processes with stationary increments,? Proc. Jpn. Acad., A,53, No. 3, 84?87 (1977). · Zbl 0437.60057
[115] N. Kono, ?Double points of a Gaussian sample path,? Z. Wahr. Verw. Geb.,45, No. 2, 175?180 (1978). · Zbl 0387.60060
[116] G. Lindgren, ?Functional limits of empirical distributions in crossing theory,? Stochast. Processes Appl.,5, No. 2, 143?149 (1977). · Zbl 0364.60064
[117] G. Lindgren, ?Prediction of level crossings for normal processes containing deterministic components,? Adv. Appl. Probab.,11, No. 1, 93?117 (1979). · Zbl 0392.60042
[118] G. Lindgren, ?Point processes of exist by bivariate Gaussian processes and extremal theory for the ?2-process and its concomitants,? J. Multivar. Anal.,10, No. 2, 181?206 (1980). · Zbl 0425.60030
[119] G. Lindgren, ?Model processes in nonlinear prediction with application to detection and alarm,? Ann. Probab.,8, No. 4, 775?792 (1980). · Zbl 0434.60044
[120] G. Lindgren, ?Extreme values and crossing for the ?2-process and other functions of multidimensional Gaussian processes with reliability applications,? Adv. Appl. Probab.,12, No. 3, 746?774 (1980). · Zbl 0434.60038
[121] M. B. Marcus, ?Level crossings of a stochastic process with absolutely continuous sample paths,? Ann. Prob.,5, No. 1, 52?71 (1977). · Zbl 0364.60063
[122] M. B. Marcus, L. A. Shepp, ?Continuity of Gaussian processes,? Trans. Am. Math. Soc.,151, No. 2, 377?391 (1970). · Zbl 0209.49201
[123] W. P. McCormick, ?Weak convergence for the maxima of stationary Gaussian processes using random normalization,? Ann. Probab.,8, No. 3, 483?497 (1980). · Zbl 0434.60033
[124] W. P. McCormick, ?An extension to a strong law result of Mittal and Ylvisaker for the maxima of stationary Gaussian processes,? Ann. Probab.,8, No. 3, 498?510 (1980). · Zbl 0451.60040
[125] Y. Mittal, ?Maxima of partial samples in Gaussian sequences,? Ann. Probab.,6, No. 3, 421?432 (1978). · Zbl 0378.60037
[126] Y. Mittal, ?A new mixing condition for stationary Gaussian processes,? Ann. Probab.,7, No. 4, 724?730 (1979). · Zbl 0412.60046
[127] Y. Mittal and D. Ylvisaker, ?Limit distributions for the maxima of stationary Gaussian processes,? Stochast. Processes Appl.,3, No. 1, 1?18 (1975). · Zbl 0296.60021
[128] Y. Mittal and D. Ylvisaker, ?Strong laws for the maxima of stationary Gaussian processes,? Ann. Probab.,4, No. 3, 357?371 (1976). · Zbl 0341.60024
[129] C. Nanopoulos and P. Nobelis, ?Régularité et propriétés limites des fonctions aléatoires,? Lect. Notes Math.,649, 567?690 (1978). · Zbl 0376.60041
[130] J. Pickands, III, ?Upcrossing probabilities for stationary Gaussian processes,? Trans. Am. Math. Soc.,145, 51?73, Nov. (1969). · Zbl 0206.18802
[131] L. D. Pitt, ?Local times for Gaussian vector fields,? Indiana Univ. Math. J.,27, No. 2, 309?330 (1978). · Zbl 0382.60055
[132] L. D. Pitt and Lanh Tat Tran, ?Local sample path properties of Gaussian fields,? Ann. Probab.,7, No. 3, 477?493 (1979). · Zbl 0401.60035
[133] R. L. Plackett, ?A reduction formula for normal multivariate integrals,? Biometrika,41, No. 3?4, 351?360 (1954). · Zbl 0056.35702
[134] C. Quails, ?The law of the iterated logarithm on arbitrary sequences for stationary Gaussian processes and Brownian motion,? Ann. Probab.,5, No. 5, 724?739 (1977). · Zbl 0375.60035
[135] Hiroshi Sato and Masami Tanabe, ?Level dependence of the variance of the number of level-crossing points of a stationary Gaussian process,? IEEE Trans. Inf. Theory,25, No. 1, 127?129 (1979).
[136] K. Sharpe, ?Some properties of the crossings process generated by a stationary ?2 process,? Adv. Appl. Probab.,10, No. 2, 373?391 (1978). · Zbl 0376.60038
[137] D. Slepian, ?The one-sided barrier problem for Gaussian noise,? Bell System Tech. J.,41, No. 2, 463?501 (1962).
[138] M. S. Taqqu, ?Weak convergence to fractional Brownian motion and to the Rosenblatt process,? Z. Wahr. Verw. Geb.,31, No. 4, 287?302 (1975). · Zbl 0303.60033
[139] M. S. Taqqu, ?Law of the iterated logarithm for sums of nonlinear functions of Gaussian variables that exhibit a long range dependence,? Z. Wahr. Verw. Geb.,40, 203?238 (1977). · Zbl 0358.60048
[140] M. S. Taqqu, ?A representation for self-similar processes,? Stochast. Process. Appl.,7, No. 1, 55?64 (1978). · Zbl 0373.60048
[141] M. Weber, ?Classes uniformes de processus gaussiens stationnaries,? Lect. Notes Math.,581, 196?256 (1977). · Zbl 0401.60036
[142] M. Weber, ?Classes superieurs de processus gaussiens,? Z. Wahr. Verw. Geb.,42, No. 2, 113?128 (1978). · Zbl 0374.60050
[143] M. Weber, ?Tests integraus pour certaines classes de processus gaussiens stationnaries a trajectoires continues,? C. R. Acad. Sci.,AB287, No. 14, A969-A971 (1978). · Zbl 0391.60041
[144] M. Weber, ?Sur les D-modules asymptotiques des processus strictement stationnaries ergodiques,? Z. Wahr. Verw. Geb.,536, No. 2, 231?240 (1980). · Zbl 0432.60041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.