×

Rayleigh-Taylor instability of ionized viscous fluids with FLR- corrections and surface-tension. (English) Zbl 0672.76050

Summary: The problem of Rayleigh-Taylor instability of superposed viscous magnetized fluids through porous medium is investigated in a partially- ionized medium. The fluid has ionized and neutralized particle components interacting with collisions. The effect of surface tension on R-T instability is also included in the present problem. The magnetohydrodynamic equations are modified for finite-Larmor radius corrections which is in the form of tensor. The equations of problem are linearized and using appropriate boundary condition, general dispersion relation is derived for two superposed fluids separated by horizontal boundary. The first part of the dispersion relation gives stable mode and condition is investigated using Hurwitz conditions. The second part of the dispersion relation shows that the growth rate of unstable system is reduced due to FLR corrections, viscosity, and collisional frequency of the neutrals. The role of surface tension on the system is also discussed.

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76W05 Magnetohydrodynamics and electrohydrodynamics
76T99 Multiphase and multicomponent flows
76V05 Reaction effects in flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allen, A. J. and Hughes, P. A.: 1984,Monthly Notices Roy. Astron. Soc. 208, 609.
[2] Bellman, R. and Pennington, R. H.: 1954,Appl. Math. 12, 151.
[3] Bhatia, P. K. and Chhonkar, R. P. S.: 1985,Astrophys. Space Sci. 114, 271. · Zbl 0572.76041 · doi:10.1007/BF00653970
[4] Chandrasekhar, S.: 1961,Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, Chapter X. · Zbl 0142.44103
[5] Craik, A. D. D.: 1976,Phys. Fluids 19, 479. · Zbl 0332.76022 · doi:10.1063/1.861477
[6] Evans, R. G., Bennett, A. J., and Pert, G. J.: 1982,Phys. Rev. Letters 49, 1639. · doi:10.1103/PhysRevLett.49.1639
[7] Hans, H. K.: 1968,Nucl. Fusion 8, 89. · doi:10.1088/0029-5515/8/2/002
[8] Kalra, G. L.: 1967,Can. J. Phys. 45, 1579.
[9] Menikoff, R., Mjolsness, R. C., Sharp, D. H., and Zemach, C.: 1977,Phys. Fluids 20, 2000. · Zbl 0379.76041 · doi:10.1063/1.861831
[10] Nayfeh, Ali Hasan: 1972,Phys. Fluids 15, 1751. · doi:10.1063/1.1693772
[11] Nayyar, N. K. and Trehan, S. K.: 1970,J. Plasma Phys. 4, 1751. · doi:10.1017/S0022377800005237
[12] Ogbonna, N. and Bhatia, P. K.: 1984,Astrophys. Space Sci. 103, 233. · doi:10.1007/BF00653739
[13] Plesset, M. S. and Whipple, C. G.: 1974,Phys. Fluids 17, 1. · Zbl 0282.76037 · doi:10.1063/1.1694570
[14] Prosperetti, A.: 1976,Phys. Fluids 19, 195. · Zbl 0347.76007 · doi:10.1063/1.861446
[15] Prosperetti, A.: 1981,Phys. Fluids 24, 1217. · Zbl 0469.76035 · doi:10.1063/1.863522
[16] Rayleigh, L.: 1945,Theory of Sound, Vol. 2, 2nd ed., Dover, New York. · Zbl 0061.45904
[17] Sharma, R. C.: 1973,Acad. Prog. Math., B.H.U. Varanasa India 7, 1.
[18] Shivamoggi, B. K.: 1982,Astrophys. Space Sci. 84, 477. · Zbl 0513.76036 · doi:10.1007/BF00713642
[19] Singh, S. and Hans, H.: 1966,Nucl. Fusion 6, 6. · doi:10.1088/0029-5515/6/1/002
[20] Taylor, G. I.: 1950,Proc. Roy. Soc. London Ser. A 201, 192. · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.