×

The wave based method: an overview of 15 years of research. (English) Zbl 1456.35006

Summary: The Wave Based Method is a deterministic prediction technique to solve steady-state dynamic problems and is developed to overcome some of the frequency limitations imposed by element-based prediction techniques. The method belongs to the family of indirect Trefftz approaches and uses a weighted sum of so-called wave functions, which are exact solutions of the governing partial differential equations, to approximate the dynamic field variables. By minimising the errors on boundary and interface conditions, a system of equations is obtained which can be solved for the unknown contribution factors of each wave function. As a result, the system of equations is smaller and a higher convergence rate and lower computational loads are obtained as compared to conventional prediction techniques. On the other hand, the method shows its full efficiency for rather moderately complex geometries. As a result, various enhancements have been made to the method through the years, in order to extend the applicability of the Wave Based Method. This paper gives an overview of the current state of the art of the Wave Based Method, elaborating on the modelling procedure, a comparison of the properties of the Wave Based Method and element-based prediction techniques, application areas, extensions to the method such as hybrid and multi-level approaches and the most recent developments.

MSC:

35A25 Other special methods applied to PDEs
74J05 Linear waves in solid mechanics
76Q05 Hydro- and aero-acoustics
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N99 Numerical methods for partial differential equations, boundary value problems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z.; Nithiarasu, P., The Finite Element Method - The Three Volume Set (2005), Butterworth-Heinemann · Zbl 1084.74001
[2] Von Estorff, O., Boundary Elements in Acoustics: Advances and Applications (2000), WITpress · Zbl 0987.76515
[3] Bouillard, P.; Ihlenburg, R., Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications, Comput. Methods Appl. Mech. Eng., 176, 147-163 (1999) · Zbl 0954.76040
[4] Freymann, R., Advanced Numerical and Experimental Methods in the Field of Vehicle Structural-acoustics (2000), Hieronymus Buchreproduktions GmbH
[5] Marburg, S., Six boundary elements per wavelength: is that enough?, J. Comput. Acoust., 10, 25-51 (2002) · Zbl 1360.76168
[6] Lyon, R.; DeJong, R., Theory and Application of Statistical Energy Analysis (1995), Butterworth-Heinemann
[7] Erlangga, Y. A., Advances in iterative methods and preconditioners for the Helmholtz equation, Arch. Comput. Methods Eng., 15, 37-66 (2008) · Zbl 1158.65078
[8] Craig, R. R.; Kurdila, A. J., Fundamentals of Structural Dynamics (2005), John Wiley & Sons: John Wiley & Sons New York Chichester Brisbane Toronto Singapore · Zbl 1118.70001
[9] Sakuma, T.; Yasuda, Y., Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation, Acustica, 88, 513-525 (2002)
[10] Yasuda, Y.; Sakuma, T., Fast multipole boundary element method for large-scale steady-state sound field analysis. Part II: examination of numerical items, Acustica, 89, 28-38 (2002)
[11] Farhat, C.; Harari, I.; Franca, L. P., The discontinuous enrichment method, Comput. Methods Appl. Mech. Eng., 190, 6455-6479 (2001) · Zbl 1002.76065
[12] Melenk, J.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289-314 (1996) · Zbl 0881.65099
[14] Mace, B.; Shorter, P., Energy flow models from finite element analysis, J. Sound Vib., 233, 369-389 (2000)
[15] Maxit, L.; Guyader, J.-L., Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, part I: theory, J. Sound Vib., 239, 907-930 (2001)
[16] Langley, R. S.; Cordioli, J. A., Hybrid deterministic-statistical analysis of vibro-acoustic systems with domain couplings on statistical components, J. Sound Vib., 321, 893-912 (2009)
[18] Pluymers, B.; Van Hal, B.; Vandepitte, D.; Desmet, W., Trefftz-based methods for time-harmonic acoustics, Arch. Comput. Methods Eng., 14, 343-381 (2007) · Zbl 1170.76332
[21] Franca, L.; Farhat, C.; Macedo, A.; Lesoinne, M., Residual-free bubbles for Helmholtz equation, Internat. J. Numer. Methods Engrg., 40, 4003-4009 (1997) · Zbl 0897.73062
[22] Tezaur, R.; Zhang, L.; Farhat, C., A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems, Comput. Methods Appl. Mech. Eng., 197, 1680-1698 (2008) · Zbl 1194.74476
[23] Gabard, G., Discontinuous Galerkin methods with plane waves for timeharmonic problems, J. Comput. Phys., 225, 1961-1984 (2007) · Zbl 1123.65102
[24] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. Methods Appl. Mech. Eng., 190, 4081-4193 (2001) · Zbl 0997.74069
[25] Perrey-Debain, E.; Trevelyan, J.; Bettess, P., Wave boundary elements: a theoretical overview presenting applications in scattering of short waves, Eng. Anal. Bound. Elem., 28, 131-141 (2004) · Zbl 1116.76399
[26] Koopmann, G. H.; Song, L.; Fahnline, J. B., A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Am., 86 (1989), 2443-2438
[27] Ochmann, M., The source simulation technique for acoustic radiation problems, Acustica, 81, 512-527 (1995) · Zbl 0856.76079
[28] Goldbert, M. A.; Chen, C. S., The MFS for potential, Helmholtz and diffusion problems, (Boundary Integral Methods: Numerical and Mathematical Aspects (1999), WIT Press and Computational Mechanics Publ: WIT Press and Computational Mechanics Publ Boston, Southampton), (Chapter 4)
[29] Huttunen, T.; Gamallo, P.; Astley, R. J., Comparison of two wave element methods for the Helmholtz problem, Commun. Numer. Methods Eng., 25, 35-52 (2009) · Zbl 1158.65347
[30] Qin, Q.-H., Formulation of hybrid Trefftz finite element method for elastoplasticity, Appl. Math. Model., 29, 235-252 (2005) · Zbl 1081.74043
[31] Riou, H.; Ladèveze, P.; Rouch, P., Extension of the variational theory of complex rays to shells for medium-frequency vibrations, J. Sound Vib., 272, 341-360 (2004)
[32] Kovalevsky, L.; Ladevèze, P.; Riou, H., The Fourier version of the variational theory of complex rays for medium-frequency acoustics, Comput. Methods Appl. Mech. Eng., 225-228, 142-153 (2012) · Zbl 1253.76118
[33] Pierce, A., (Acoustics: An Introduction to Its Physical Principles and Applications. Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill Series in Mechanical Engineering (1981), McGraw-Hill)
[34] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Springer-Verlag: Springer-Verlag Berlin, Heidelbert, New York · Zbl 0893.35138
[36] Herrera, I., (Boundary Methods: An Algebraic Theory. Boundary Methods: An Algebraic Theory, Applicable Mathematic Series (1984), Pitman Advanced Publishing Programm) · Zbl 0549.35004
[38] Van Genechten, B.; Bergen, B.; Vandepitte, D.; Desmet, W., A Trefftz-based numerical modelling framework for Helmholtz problems with complex multiple scatterer configurations, J. Comput. Phys., 229, 18, 6623-6643 (2010) · Zbl 1425.35020
[39] Van Genechten, B.; Vergote, K.; Vandepitte, D.; Desmet, W., A multi-level wave based numerical modelling framework for the steady-state dynamic analysis of bounded Helmholtz problems with multiple inclusions, Comput. Methods Appl. Mech. Eng., 199, 1881-1905 (2010) · Zbl 1231.76222
[40] Van Genechten, B.; Vandepitte, D.; Desmet, W., A direct hybrid finite element — wave based modelling technique for efficient coupled vibro-acoustic analysis, Comput. Methods Appl. Mech. Eng., 200, 742-764 (2011) · Zbl 1225.74110
[41] Atak, O.; Bergen, B.; Huybrechs, D.; Pluymers, B.; Desmet, W., Coupling of boundary element and wave based methods for efficient solution of complex multiple scattering problems, J. Comput. Phys., 258, 165-184 (2013) · Zbl 1349.76414
[42] Zieliński, A. P.; Herrera, I., Trefftz method: fitting boundary conditions, Internat. J. Numer. Methods Engrg., 24, 871-891 (1987) · Zbl 0622.65105
[43] Varah, J. M., A practical examination of some numerical methods for linear discrete ill-posed problems, SIAM Rev., 21, 100-111 (1979) · Zbl 0406.65015
[44] Varah, J. M., Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci. Stat. Comput., 4, 164-176 (1983) · Zbl 0533.65082
[45] Deckers, E.; Drofmans, B.; Van Genechten, B.; Bergen, B.; Vandepitte, D.; Desmet, W., Spline-based boundaries: a first step towards generic geometric domain descriptions for efficient mid-frequency acoustic analysis using the wave based method, J. Comput. Appl. Math., 235, 2679-2693 (2011) · Zbl 1350.76045
[46] Van Genechten, B.; Atak, O.; Bergen, B.; Deckers, E.; Jonckheere, S.; Lee, J. S.; Maressa, A.; Vergote, K.; Pluymers, B.; Vandepitte, D.; Desmet, W., An efficient Wave Based Method for solving Helmholtz problems in three-dimensional bounded domains, Eng. Anal. Bound. Elem., 36, 63-75 (2012) · Zbl 1259.76057
[47] Deckers, E.; Bergen, B.; Van Genechten, B.; Vandepitte, D.; Desmet, W., An efficient wave based method for 2D acoustic problems containing corner singularities, Comput. Methods Appl. Mech. Eng., 241-244, 286-301 (2012) · Zbl 1353.76057
[48] Pluymers, B.; Desmet, W.; Vandepitte, D.; Sas, P., On the use of a wave based prediction technique for steady-state structural-acoustic radiation analysis, Computer Model. Eng. Sci., 7, 2, 173-184 (2005) · Zbl 1189.76344
[49] Bergen, B.; Van Genechten, B.; Vandepitte, D.; Desmet, W., An efficient Trefftz-based method for three-dimensional Helmholtz problems in unbounded domains, Computer Model. Eng. Sci., 61, 2, 155-175 (2010) · Zbl 1231.76259
[50] Bergen, B.; Pluymers, B.; Van Genechten, B.; Vandepitte, D.; Desmet, W., A Trefftz based method for solving Helmholtz problems in semi-infinite domains, Eng. Anal. Bound. Elem., 36, 30-38 (2012) · Zbl 1259.76039
[51] Vanmaele, C.; Vandepitte, D.; Desmet, W., An efficient wave based prediction technique for plate bending vibrations, Comput. Methods Appl. Mech. Eng., 196, 3178-3189 (2007) · Zbl 1173.74483
[52] Vanmaele, C.; Vandepitte, D.; Desmet, W., An efficient wave based prediction technique for dynamic plate bending problems with corner stress singularities, Comput. Methods Appl. Mech. Eng., 198, 2227-2245 (2009) · Zbl 1229.74157
[53] Vanmaele, C.; Vergote, K.; Vandepitte, D.; Desmet, W., Simulation of in-plane vibrations of 2D structural solids with singularities using an efficient wave based prediction technique, Comput. Assist. Mech. Eng. Sci., 19, 135-171 (2012)
[54] Helmholtz, H. L.F., Über integrale der hydrodynamischen Gleichungen, welch den Wirbelbewegungen entsprechen, Crelles J., 55, 25-55 (1958) · ERAM 055.1448cj
[56] Vergote, K.; Vanmaele, C.; Vandepitte, D.; Desmet, W., An efficient wave based approach for the time-harmonic vibration analysis of 3D plate assemblies, J. Sound Vib., 332, 1930-1946 (2013)
[57] Pluymers, B.; Desmet, W.; Vandepitte, D.; Sas, P., Application of an efficient wave-based prediction technique for the analysis of vibro-acoustic radiation problems, J. Comput. Appl. Math., 168, 353-364 (2004) · Zbl 1107.76387
[58] Lanoye, R.; Vermeir, G.; Lauriks, W.; Sgard, F.; Desmet, W., Prediction of the sound field above a patchwork of absorbing materials, J. Acoust. Soc. Am., 123, 793-802 (2008)
[59] Deckers, E.; Hörlin, N.-E.; Vandepitte, D.; Desmet, W., A wave based method for the efficient solution of the 2D poroelastic Biot equations, Comput. Methods Appl. Mech. Eng., 201-204, 245-262 (2012) · Zbl 1239.74023
[60] Deckers, E.; Vandepitte, D.; Desmet, W., A wave based method for the axisymmetric dynamic analysis of acoustic and poroelastic problems, Comput. Methods Appl. Mech. Eng., 257, 1-16 (2013) · Zbl 1286.76132
[61] Deckers, E.; Van Genechten, B.; Vandepitte, D.; Desmet, W., Efficient treatment of stress singularities in poroelastic Wave Based models using special purpose enrichment functions, Comput. Struct., 89, 1117-1130 (2012)
[63] van Hal, B.; Desmet, W.; Vandepitte, D.; Sas, P., A coupled finite elementwave based approach for the steady-state dynamic analysis of acoustic systems, J. Comput. Acoustics, 11, 2, 285-303 (2003) · Zbl 1360.76157
[64] van Hal, B.; Desmet, W.; Vandepitte, D., Hybrid finite element-wave-based method for steady-state interior structural-acoustic problems, Comput. Struct., 83, 2-3, 167-180 (2005)
[65] Keller, J. B.; Givoli, D., Exact non-reflecting boundary conditions, J. Comput. Phys., 82, 172-192 (1989) · Zbl 0671.65094
[67] Jonckheere, S.; Deckers, E.; Van Genechten, B.; Vandepitte, D.; Desmet, W., A direct hybrid finite element - wave based method for the steady-state analysis of acoustic cavities with poro-elastic damping layers using the coupled Helmholtz-Biot equations, Comput. Methods Appl. Mech. Eng., 263, 144-157 (2013) · Zbl 1286.76133
[68] Shorter, P.; Langley, R., On the reciprocity relationship between direct field radiation and diffuse reverberant loading, J. Acoust. Soc. Am., 117, 85-95 (2005)
[69] Vergote, K.; Van Genechten, B.; Vandepitte, D.; Desmet, W., On the analysis of vibro-acoustic systems in the mid-frequency range using a hybrid deterministic-statistical approach, Comput. Struct., 89, 868-877 (2011)
[71] Koo, K.; Pluymers, B.; Desmet, W.; Wang, S., Vibro-acoustic design sensitivity analysis using the wave-based method, J. Sound Vib., 330, 4340-4351 (2011)
[73] Atak, O.; Huybrechs, D.; Pluymers, B.; Desmet, W., The design of Helmholtz resonator based acoustic lenses by using the symmetric Multi-Level Wave Based Method and genetic algorithms, J. Sound Vib. (2013), under review
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.