×

A direct meshless method for solving two-dimensional second-order hyperbolic telegraph equations. (English) Zbl 1489.65151

Summary: In this paper, a direct meshless method (DMM), which is based on the radial basis function, is developed to the numerical solution of the two-dimensional second-order hyperbolic telegraph equations. Since these hyperbolic telegraph equations are time dependent, we present two schemes for the basis functions from radial and nonradial aspects. The first scheme is fulfilled by considering time variable as normal space variable to construct an “isotropic” space-time radial basis function. The other scheme considered a realistic relationship between space variable and time variable which is not radial. The time-dependent variable is treated regularly during the whole solution process and the hyperbolic telegraph equations can be solved in a direct way. Numerical experiments performed with the proposed numerical scheme for several two-dimensional second-order hyperbolic telegraph equations are presented with some discussions, which show that the DMM solutions are converging very fast in comparison with the various existing numerical methods.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65D12 Numerical radial basis function approximation
35L20 Initial-boundary value problems for second-order hyperbolic equations

Software:

rbf_qr
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cheng, R. G.; Ge, H. X., Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation, Chinese Physics B, 18, 4059-4064 (2009)
[2] Ahmad, I.; Ahmad, H.; Abouelregal, A. E.; Thounthong, P.; Abdel-Aty, M., Numerical study of integer-order hyperbolic telegraph model arising in physical and related sciences, European Physical Journal-Plus, 135, 759 (2020) · doi:10.1140/epjp/s13360-020-00784-z
[3] Mohanty, R. K.; Jain, M. K., An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numerical Methods for Partial Differential Equations, 17, 6, 684-688 (2001) · Zbl 0990.65101 · doi:10.1002/num.1034
[4] Mohanty, R. K., An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions, Applied Mathematics and Computation, 152, 3, 799-806 (2004) · Zbl 1077.65093 · doi:10.1016/s0096-3003(03)00595-2
[5] Mohanty, R. K., New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, International Journal of Computer Mathematics, 86, 12, 2061-2071 (2009) · Zbl 1181.65112 · doi:10.1080/00207160801965271
[6] Bülbül, B.; Sezer, M., A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation, Applied Mathematics Letters, 24, 10, 1716-1720 (2011) · Zbl 1221.35019 · doi:10.1016/j.aml.2011.04.026
[7] Dehghan, M.; Yousefi, S. A.; Lotfi, A., The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations, International Journal for Numerical Methods in Biomedical Engineering, 27, 2, 219-231 (2011) · Zbl 1210.65173 · doi:10.1002/cnm.1293
[8] Jiwari, R.; Pandit, S.; Mittal, R. C., A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Applied Mathematics and Computation, 218, 13, 7279-7294 (2012) · Zbl 1246.65174 · doi:10.1016/j.amc.2012.01.006
[9] Mittal, R. C.; Bhatia, R., A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method, Applied Mathematics and Computation, 244, 976-997 (2014) · Zbl 1336.65178 · doi:10.1016/j.amc.2014.07.060
[10] Singh, B. K.; Kumar, P., An algorithm based on a new DQM with modified extended cubic B-splines for numerical study of two dimensional hyperbolic telegraph equation, Alexandria Engineering Journal, 57, 1, 175-191 (2018) · doi:10.1016/j.aej.2016.11.009
[11] Hafez, R. M., Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method, Computational and Applied Mathematics, 37, 4, 5253-5273 (2018) · Zbl 1404.65196 · doi:10.1007/s40314-018-0635-1
[12] Zheng, H.; Wang, F.; Chen, C. S.; Min, L.; Wang, Y., Improved 3D surface reconstruction via the method of fundamental solutions, Numerical Mathematics: Theory, Methods and Applications, 13, 4, 973-985 (2020) · Zbl 1474.65037 · doi:10.4208/nmtma.oa-2019-0192
[13] Zheng, H.; Zhou, C.; Yan, D.-J.; Wang, Y.-S.; Zhang, C., A meshless collocation method for band structure simulation of nanoscale phononic crystals based on nonlocal elasticity theory, Journal of Computational Physics, 408, 109268 (2020) · Zbl 07505606 · doi:10.1016/j.jcp.2020.109268
[14] Zheng, H.; Zhang, C.; Yang, Z., A local radial basis function collocation method for band structure computation of 3D phononic crystals, Applied Mathematical Modelling, 77, 1954-1964 (2020) · Zbl 1481.74117 · doi:10.1016/j.apm.2019.09.006
[15] Dehghan, M.; Mohebbi, A., High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numerical Methods for Partial Differential Equations, 25, 1, 232-243 (2009) · Zbl 1156.65087 · doi:10.1002/num.20341
[16] Dehghan, M.; Shokri, A., A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numerical Methods for Partial Differential Equations, 25, 2, 494-506 (2009) · Zbl 1159.65084 · doi:10.1002/num.20357
[17] Dehghan, M.; Ghesmati, A., Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, Engineering Analysis with Boundary Elements, 34, 4, 324-336 (2010) · Zbl 1244.65147 · doi:10.1016/j.enganabound.2009.10.010
[18] Dehghan, M.; Salehi, R., A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation, Mathematical Methods in the Applied Sciences, 35, 10, 1220-1233 (2012) · Zbl 1250.35015 · doi:10.1002/mma.2517
[19] Abbasbandy, S.; Roohani Ghehsareh, H.; Hashim, I.; Alsaedi, A., A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation, Engineering Analysis with Boundary Elements, 47, 10-20 (2014) · Zbl 1297.65125 · doi:10.1016/j.enganabound.2014.04.006
[20] Rostamy, D.; Emamjome, M.; Abbasbandy, S., A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation, European Physical Journal-Plus, 132, 263 (2017) · doi:10.1140/epjp/i2017-11529-2
[21] Lin, J.; Chen, F.; Zhang, Y.; Lu, J., An accurate meshless collocation technique for solving two-dimensional hyperbolic telegraph equations in arbitrary domains, Engineering Analysis with Boundary Elements, 108, 372-384 (2019) · Zbl 1464.65147 · doi:10.1016/j.enganabound.2019.08.012
[22] Aslefallah, M.; Rostamy, D., Application of the singular boundary method to the two-dimensional telegraph equation on arbitrary domains, Journal of Engineering Mathematics, 118, 1, 1-14 (2019) · Zbl 1436.65096 · doi:10.1007/s10665-019-10008-8
[23] Zhou, Y.; Qu, W.; Gu, Y.; Gao, H., A hybrid meshless method for the solution of the second order hyperbolic telegraph equation in two space dimensions, Engineering Analysis with Boundary Elements, 115, 21-27 (2020) · Zbl 1464.65155 · doi:10.1016/j.enganabound.2020.02.015
[24] Reutskiy, S.; Zhang, Y.; Lin, J.; Sun, H., Novel numerical method based on cubic B-splines for a class of nonlinear generalized telegraph equations in irregular domains, Alexandria Engineering Journal, 59, 1, 77-90 (2020) · doi:10.1016/j.aej.2019.12.009
[25] Glushkov, E. V.; Glushkova, N. V.; Chen, C. S., SemiAnalytical solution to heat transfer problems using Fourier transform technique, radial basis functions, and the method of fundamental solutions, Numerical Heat Transfer, Part B: Fundamentals, 52, 5, 409-427 (2007) · doi:10.1080/10407790701443859
[26] Gu, Y.; He, X.; Chen, W.; Zhang, C., Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method, Computers & Mathematics with Applications, 75, 1, 33-44 (2018) · Zbl 1416.80006 · doi:10.1016/j.camwa.2017.08.030
[27] Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P., Recent advances in computational-analytical integral transforms for convection-diffusion problems, Heat and Mass Transfer, 54, 8, 2475-2496 (2018) · doi:10.1007/s00231-017-2186-1
[28] Ravnik, J.; Tibuat, J., Fast boundary-domain integral method for unsteady convection-diffusion equation with variable diffusivity using the modified Helmholtz fundamental solution, Numerical Algorithms, 82, 4, 1441-1466 (2019) · Zbl 1442.65416 · doi:10.1007/s11075-019-00664-3
[29] Kansa, E. J., Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & Mathematics with Applications, 19, 8-9, 147-161 (1990) · Zbl 0850.76048 · doi:10.1016/0898-1221(90)90271-k
[30] Fornberg, B.; Larsson, E.; Flyer, N., Stable computations with Gaussian radial basis functions, SIAM Journal on Scientific Computing, 33, 2, 869-892 (2011) · Zbl 1227.65018 · doi:10.1137/09076756x
[31] Myers, D. E., Anisotropic radial basis functions, International Journal of Pure and Applied Mathematics, 42, 197-203 (2008) · Zbl 1136.65019
[32] Myers, D. E.; De Iaco, S.; Posa, D.; De Cesare, L., Space-time radial basis functions, Computers & Mathematics with Applications, 43, 3-5, 539-549 (2002) · Zbl 1006.41023 · doi:10.1016/s0898-1221(01)00304-2
[33] Parand, K.; Rad, J. A., Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement, Computer Physics Communications, 184, 3, 582-595 (2013) · doi:10.1016/j.cpc.2012.10.012
[34] Ku, C.-Y.; Liu, C.-Y.; Xiao, J.-E.; Chen, M.-R., Solving backward heat conduction problems using a novel space-time radial polynomial basis function collocation method, Applied Sciences, 10, 9, 3215 (2020) · doi:10.3390/app10093215
[35] Wang, F.; Chen, W.; Jiang, X., Investigation of regularized techniques for boundary knot method, International Journal for Numerical Methods in Biomedical Engineering, 26, 12, 1868-1877 (2010) · Zbl 1208.65173 · doi:10.1002/cnm.1275
[36] Wang, F.; Chen, W.; Ling, L., Combinations of the method of fundamental solutions for general inverse source identification problems, Applied Mathematics and Computation, 219, 3, 1173-1182 (2012) · Zbl 1287.35103 · doi:10.1016/j.amc.2012.07.027
[37] Fasshauer, G. E.; Zhang, J. G., On choosing “optimal” shape parameters for RBF approximation, Numerical Algorithms, 45, 1-4, 345-368 (2007) · Zbl 1127.65009 · doi:10.1007/s11075-007-9072-8
[38] Chen, W.; Hong, Y.; Lin, J., The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method, Computers & Mathematics with Applications, 75, 8, 2942-2954 (2018) · Zbl 1415.65264 · doi:10.1016/j.camwa.2018.01.023
[39] Bazighifan, O.; Ramos, H., On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term, Applied Mathematics Letters, 107 (2020) · Zbl 1445.34107 · doi:10.1016/j.aml.2020.106431
[40] Bazighifan, O., Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations, Advances in DifferenceEquations., 2020, 201 (2020) · Zbl 1482.34153 · doi:10.1186/s13662-020-02661-6
[41] Bazighifan, O., On the oscillation of certain fourth-order differential equations with p-Laplacian like operator, Applied Mathematics and Computation, 386 (2020) · Zbl 1497.34095 · doi:10.1016/j.amc.2020.125475
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.