×

A direct method for solving projected generalized continuous-time Sylvester equations. (English) Zbl 1274.65123

Summary: This article is devoted to the numerical solution of a projected generalized Sylvester equation with relatively small size. Such an equation arises in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. The algebraic formula of the solution of the projected generalized continuous-time Sylvester equation is presented. A direct method based on the generalized Schur factorization is proposed. Moreover, its low-rank version for problems with low-rank right-hand sides is also proposed. The computational cost of the direct method is estimated. Numerical simulations show that this direct method has high accuracy.

MSC:

65F30 Other matrix algorithms (MSC2010)
15A24 Matrix equations and identities
65F05 Direct numerical methods for linear systems and matrix inversion

Software:

LAPACK; SLICOT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. D. O. Anderson, J. B. Moore. Optimal Control-Linear Quadratic Methods. Englewood Cliffs: Prentice-Hall, 1990. · Zbl 0751.49013
[2] U. Helmke, J. B. Moore. Optimization and Dynamical Systems. London: Springer, 1994. · Zbl 0984.49001
[3] V. Mehrmann. The autonomous linear quadratic control problem, theory and numerical solution. Lecture Notes in Control and Information Sciences. Heidelberg: Springer, 1991. · Zbl 0746.93001
[4] P. H. Petkov, N. D. Christov, M. M. Konstantinov. Computational Methods for Linear Control Systems. Hertfordshire: Prentice-Hall, 1991. · Zbl 0790.93001
[5] T. Stykel. Gramian-based model reduction for descriptor systems. Mathematics of Control, Signals, and Systems, 2004, 16(4): 297–319. · Zbl 1067.93011 · doi:10.1007/s00498-004-0141-4
[6] T. Stykel. Low rank iterative methods for projected generalized Lyapunov equations. Electronic Transactions on Numerical Analysis, 2008, 30(1): 187–202. · Zbl 1171.65385
[7] T. Stykel. Numerical solution and perturbation theory for generalized Lyapunov equations. Linear Algebra and its Applications, 2002, 349(1): 155–185. · Zbl 1003.65042 · doi:10.1016/S0024-3795(02)00255-0
[8] T. Stykel. Stability and inertia theorems for generalized Lyapunov equations. Linear Algebra and its Applications, 2002, 355(1): 297–314. · Zbl 1016.15010 · doi:10.1016/S0024-3795(02)00354-3
[9] T. Stykel. A modified matrix sign function method for projected Lyapunov equations. System & Control Letters, 2007, 56(11): 695–701. · Zbl 1125.93053 · doi:10.1016/j.sysconle.2007.06.003
[10] Y. Lin, L. Bao, Y. Wei. Matrix sign function methods for solving projected generalized continuous-time Sylvester equations. IEEE Transactions on Automatic Control, 2010, 55(11): 2629–2634. · Zbl 1368.65067 · doi:10.1109/TAC.2010.2064590
[11] J.W. Demmel, B. Kågström. The generalized Schur decomposition of an arbitrary pencil A – {\(\lambda\)}B: Robust software with error bounds and applicaitons – Part I: Theory and algorithms. ACM Transactions on Mathematical Software, 1993, 19(2): 160–174. · Zbl 0889.65042 · doi:10.1145/152613.152615
[12] J.W. Demmel, B. Kågström. The generalized Schur decomposition of an arbitrary pencil A – {\(\lambda\)}B: Robust software with error bounds and applications – Part II: Software and applications. ACM Transactions on Mathematical Software, 1993, 19(2): 175–201. · Zbl 0889.65043 · doi:10.1145/152613.152616
[13] G. H. Golub, C. F. Van Loan. Matrix Computations. Baltimore: Johns Hoplins University Press, 1996. · Zbl 0865.65009
[14] G. W. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Review, 1973, 15(4): 727–764. · Zbl 0297.65030 · doi:10.1137/1015095
[15] B. Kågström. A perturbation analysis of the generalized Sylvester equation (AR-LB,DR-LE) = (C, F). SIAM Journal on Matrix Analysis and Applications, 1994, 15(4): 1045–1060. · Zbl 0805.65045 · doi:10.1137/S0895479893246212
[16] Y. Lin, Y. Wei. Condition numbers of the generalized Sylvester equation. IEEE Transactions on Automatic Control, 2007, 52(12): 2380–2385. · Zbl 1367.65069 · doi:10.1109/TAC.2007.910727
[17] P. Benner, E. S. Quintana-Ortí, G. Quintana-Ortí. Solving stable Sylvester equations via rational iterative schemes. Journal of Scientific Computing, 2006, 28(1): 51–83. · Zbl 1098.65041 · doi:10.1007/s10915-005-9007-2
[18] F. R. Gantmacher. Theory of Matrices. New York: Chelsea, 1959. · Zbl 0085.01001
[19] P. Benner, V. Mehrmann, V. Sima, et al. SLICOT-a subroutine library in systems and control theory. Applied and Computational Control, Signals and Circuits, 1999, 1(1): 499–539. · Zbl 1051.93500 · doi:10.1007/978-1-4612-0571-5_10
[20] I. Jonsson, B. Kågström. Recursive blocked algorithms for solving triangular systems – Part I: one-sided and coupled Sylvester-type matrix equations. ACM Transactions on Mathematical Software, 2002, 28(4): 392–415. · Zbl 1072.65061 · doi:10.1145/592843.592845
[21] I. Jonsson, B. Kågström. Recursive blocked algorithms for solving triangular systems – Part II: two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Transactions on Mathematical Software, 2002, 28(4): 416–435. · Zbl 1072.65062 · doi:10.1145/592843.592846
[22] T. Stykel. Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra and its Applications, 2006, 415(2): 262–289. · Zbl 1102.65075 · doi:10.1016/j.laa.2004.01.015
[23] E. Anderson, Z. Bai, C. H. Bischof, et al. LAPACK User’s Guide. Philadelphia: SIAM, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.