×

An explicit numerical scheme to efficiently simulate molecular diffusion in environments with dynamically changing barriers. (English) Zbl 1338.92029

Summary: Despite temporal changes in the quantities of molecules, the functioning of cells also depends on their distribution within cells and in their extracellular environment. The dynamics of molecules are often governed by diffusion in heterogeneous environments consisting of dynamically changing impenetrable barriers (excluded volumes). This provides a challenge for efficient simulations of cellular processes with large numbers of molecules. To model the diffusion of molecular mass in consideration of excluded volumes, we here present an explicit numerical scheme that approximates the diffusion equation by using cellular automata. Because this approach represents molecular diffusion at the macroscopic scale, it is more amenable for efficient simulations than comparable microscopic approaches that treat diffusing molecules individually. In contrast to implicit numerical schemes (macroscopic approach), our approach is capable of accounting for excluded volumes, even if those exhibit a dynamic of their own, without increasing computational costs. The presented approach can easily be integrated into certain types of spatio-temporal multiscale models, as demonstrated by an existing model investigating cancer progression. Thereby, it allows to take the spatial effects of a heterogeneous environment on diffusing molecules into account.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C37 Cell biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] McNaught A.D., IUPAC. Compendium of Chemical Terminology (1997)
[2] DOI: 10.1038/nrm1838 · doi:10.1038/nrm1838
[3] Chaplain M., Tutorials in Mathematical Biosciences III pp 131– (2006) · doi:10.1007/11561606_4
[4] Cussler E., Diffusion: Mass Transfer in Fluid Systems (1997)
[5] DOI: 10.1073/pnas.0906885107 · doi:10.1073/pnas.0906885107
[6] Alberts B., Molecular Biology of the Cell (2002)
[7] DOI: 10.1016/j.jtbi.2011.03.018 · Zbl 1397.92301 · doi:10.1016/j.jtbi.2011.03.018
[8] DOI: 10.1242/jcs.02864 · doi:10.1242/jcs.02864
[9] DOI: 10.1002/glia.10204 · doi:10.1002/glia.10204
[10] DOI: 10.1016/j.semcdb.2009.08.005 · doi:10.1016/j.semcdb.2009.08.005
[11] DOI: 10.1111/j.1440-1746.2011.07000.x · doi:10.1111/j.1440-1746.2011.07000.x
[12] DOI: 10.1158/0008-5472.CAN-08-3957 · doi:10.1158/0008-5472.CAN-08-3957
[13] DOI: 10.1258/ebm.2009.009230 · doi:10.1258/ebm.2009.009230
[14] DOI: 10.1038/nrc2808 · doi:10.1038/nrc2808
[15] DOI: 10.1007/s00285-008-0212-0 · Zbl 1311.92060 · doi:10.1007/s00285-008-0212-0
[16] DOI: 10.1016/j.febslet.2005.01.072 · doi:10.1016/j.febslet.2005.01.072
[17] DOI: 10.1016/j.cell.2010.06.019 · doi:10.1016/j.cell.2010.06.019
[18] DOI: 10.1021/cr040426m · doi:10.1021/cr040426m
[19] DOI: 10.1063/1.436761 · doi:10.1063/1.436761
[20] Zwillinger D., Handbook of Differential Equations, 3. ed. (1997) · Zbl 0678.34001
[21] DOI: 10.1080/13873950902724155 · Zbl 1167.92319 · doi:10.1080/13873950902724155
[22] DOI: 10.1007/11861201_16 · Zbl 1155.37313 · doi:10.1007/11861201_16
[23] DOI: 10.1016/0167-2789(84)90254-9 · doi:10.1016/0167-2789(84)90254-9
[24] DOI: 10.1098/rstl.1850.0001 · doi:10.1098/rstl.1850.0001
[25] DOI: 10.1016/0376-7388(94)00230-V · doi:10.1016/0376-7388(94)00230-V
[26] DOI: 10.1142/2012 · doi:10.1142/2012
[27] Philibert J., J. for the Basic Princ. of Diffusion Theory, Experiment and Application 2 (2005)
[28] Einstein {\(\text{A}\)}., Investigations on the Theory of the Brownian Movement (1915)
[29] Wolfram S., Cellular Automata and Complexity (1994) · Zbl 0823.68003
[30] DOI: 10.1016/j.jcp.2014.03.023 · Zbl 1349.76592 · doi:10.1016/j.jcp.2014.03.023
[31] Press W.H., Numerical Recipes 3rd Edition - The Art of Scientific Computing (2007) · Zbl 1132.65001
[32] DOI: 10.1515/9783110212105 · doi:10.1515/9783110212105
[33] S. Grewenig, J. Weickert, and {\(\text{A}\)}. Bruhn,From Box Filtering to Fast Explicit Diffusion,inPattern Recognition, M. Goesele, S. Roth, A. Kuijper, B. Schiele, and K. Schindler, eds. Springer, Berlin, 2010, pp. 533–542.
[34] DOI: 10.1006/jtbi.1993.1007 · doi:10.1006/jtbi.1993.1007
[35] X.S. Yang and Y. Young,Cellular Automata, pdes, and Pattern Formation, arXiv preprint arXiv:1003.1983, 2010.
[36] DOI: 10.1007/3-540-48387-X_41 · doi:10.1007/3-540-48387-X_41
[37] DOI: 10.1137/0134040 · Zbl 0398.92004 · doi:10.1137/0134040
[38] C. Elgert,Numerische Lösung der Diffusiongleichung bei variabler räumlicher Struktur, Master’s thesis, University of Rostock, Germany, 2014.
[39] DOI: 10.1038/nrc2329 · doi:10.1038/nrc2329
[40] DOI: 10.1093/imammb/dqi005 · Zbl 1073.92013 · doi:10.1093/imammb/dqi005
[41] DOI: 10.1016/j.ydbio.2009.10.026 · doi:10.1016/j.ydbio.2009.10.026
[42] Silver F.H., J. Biol. Chem. 255 pp 9427– (1980)
[43] DOI: 10.1038/nrgastro.2012.115 · doi:10.1038/nrgastro.2012.115
[44] DOI: 10.1371/journal.pone.0014790 · doi:10.1371/journal.pone.0014790
[45] DOI: 10.1137/110839011 · Zbl 1302.35379 · doi:10.1137/110839011
[46] DOI: 10.1007/s11538-012-9754-9 · Zbl 1318.92025 · doi:10.1007/s11538-012-9754-9
[47] DOI: 10.1093/imammb/dqq011 · Zbl 1234.92031 · doi:10.1093/imammb/dqq011
[48] DOI: 10.1002/wsbm.102 · doi:10.1002/wsbm.102
[49] DOI: 10.1093/bib/bbp067 · doi:10.1093/bib/bbp067
[50] DOI: 10.1007/3-540-36494-3_55 · doi:10.1007/3-540-36494-3_55
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.