×

Nodal DG-FEM solution of high-order Boussinesq-type equations. (English) Zbl 1200.76121

Summary: A discontinuous Galerkin finite-element method (DG-FEM) solution to a set of high-order Boussinesq-type equations for modelling highly nonlinear and dispersive water waves in one horizontal dimension is presented. The continuous equations are discretized using nodal polynomial basis functions of arbitrary order in space on each element of an unstructured computational domain. A fourth-order explicit Runge-Kutta scheme is used to advance the solution in time. Methods for introducing artificial damping to control mild nonlinear instabilities are also discussed. The accuracy and convergence of the model with both \(h\) (grid size) and \(p\) (order) refinement are confirmed for the linearized equations, and calculations are provided for two nonlinear test cases in one horizontal dimension: harmonic generation over a submerged bar, and reflection of a steep solitary wave from a vertical wall. Test cases for two horizontal dimensions will be considered in future work.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

UMFPACK
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Madsen PA, Schäffer HA (1999) A review of Boussinesq-type equations for gravity waves. Adv Coastal Ocean Engng. 5:1–95 · doi:10.1142/9789812797544_0001
[2] Peregrine DH (1967) Long waves on a beach. J Fluid Mech 27:815–827 · Zbl 0163.21105 · doi:10.1017/S0022112067002605
[3] Madsen PA, Sørensen OR (1992) A new form of the Boussinesq equations with improved linear dispersion characteristics Part 2 A slowly varying bathymetry. Coastal Engng 18:183–204 · doi:10.1016/0378-3839(92)90019-Q
[4] Nwogu O (1993) Alternative form of Boussinesq equations for nearshore wave propagation. J Waterway, Port, Coastal and Ocean Engng, 119(6):618–638 · doi:10.1061/(ASCE)0733-950X(1993)119:6(618)
[5] Madsen PA, Agnon Y (2003) Accuracy and convergence of velocity formulations for water waves in the framework of Boussinesq theory. J Fluid Mech 477:285–319 · Zbl 1063.76526 · doi:10.1017/S0022112002003257
[6] Madsen PA, Bingham HB, Liu H (2002) A new Boussinesq method for fully nonlinear waves from shallow to deep water. J Fluid Mech 462:1–30 · Zbl 1061.76009 · doi:10.1017/S0022112002008467
[7] Jamois E, Fuhrman DR, Bingham HB, Molin B (2006) A numerical study of nonlinear wave run-up on a vertical plate. Coastal Engng (to appear)
[8] Fuhrman DR, Bingham HB (2004) Numerical solutions of fully non-linear and highly dispersive Boussinesq equations in two horizontal dimensions. Int J Num Meth Fluids 44:655–672 · Zbl 1062.76033 · doi:10.1002/fld.628
[9] Fuhrman DR, Bingham HB, Madsen PA (2005) Nonlinear wave-structure interactions with a high-order Boussinesq model. Coastal Engng 52:655–672 · doi:10.1016/j.coastaleng.2005.03.001
[10] Antunes Do Carmo JS, Seabra Santos FJ, Barthèlemy E (1993) Surface waves propagation in shallow water: a finite element model. Int J Num Meth Fluids 16:447–459 · Zbl 0825.76448 · doi:10.1002/fld.1650160602
[11] Ambrosi D, Quartapelle L (1998) A Taylor-Galerkin method for simulating nonlinear dispersive water waves. J Comp Phys 146:546–569 · Zbl 0932.76031 · doi:10.1006/jcph.1998.6027
[12] Sherwin SJ, Eskilsson C (2006) Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations. J Comp Phys 212:566–589 · Zbl 1084.76058 · doi:10.1016/j.jcp.2005.07.017
[13] Langtangen HP, Pedersen G (1998) Computational models for weakly dispersive nonlinear water waves. Comput Methods Appl Engng 160:337–358 · Zbl 0952.76059 · doi:10.1016/S0045-7825(98)00293-X
[14] Li YS, Liu S-X, Yu Y-X, Lai G-Z (1999) Numerical modelling of Boussinesq equations by finite element method. Coastal Engng 37:97–122 · doi:10.1016/S0378-3839(99)00014-9
[15] Beji S, Nadaoka K (1996) A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth. Ocean Engng 23:691–704 · doi:10.1016/0029-8018(96)84408-8
[16] Sørensen OR, Schäffer HA, Sørensen LS (2004) Boussinesq-type modelling using an unstructured finite element technique. Coastal Engng 50:181–198 · doi:10.1016/j.coastaleng.2003.10.005
[17] Walkley MA, Berzins M (1999) A finite element method for the one-dimensional extended Boussinesq equations. Int J Num Meth Fluids 29:143–157 · Zbl 0941.76055 · doi:10.1002/(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.CO;2-5
[18] Walkley MA, Berzins M (2002) A finite element method for the two-dimensional extended Boussinesq equations. Int J Num Meth Fluids 39:865–885 · Zbl 1101.76362 · doi:10.1002/fld.349
[19] Eskilsson C, Sherwin SJ (2003) An hp/spectral element model for efficient long-time integration of Boussinesq-type equations. Coastal Engng 45:295–320 · doi:10.1142/S0578563403000762
[20] Eskilsson C, Sherwin SJ (2005) An unstructured spectral/hp element model for enhanced Boussinesq-type equations. Submitted to Coastal Engng · Zbl 1067.76057
[21] Eskilsson C, Sherwin SJ (2002) A discontinuous spectral element model for Boussinesq-type equations. J Sci Comp 17:143–152 · Zbl 1001.76073 · doi:10.1023/A:1015144429543
[22] Eskilsson C, Sherwin SJ (2005) Discontinuous Galerkin spectral/hp element modelling of dispersive shallow water systems. J Sci Comp 22:269–288 · Zbl 1067.76057 · doi:10.1007/s10915-004-4140-x
[23] Fuhrman DR, Bingham HB, Madsen PA, Thomsen PG (2004) Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations. Int J Num Meth Fluids 45:751–773 · Zbl 1085.76048 · doi:10.1002/fld.713
[24] Cockburn B, Shu C-W (2001) Runge-Kutta Discontinuous Galerkin methods for convection-dominated Problems. J Sci Comp 16(3):173–261 · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[25] Hesthaven JS, Warburton T (2002) High-order nodal methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J Comp Phys 181(1):186–221 · Zbl 1014.78016 · doi:10.1006/jcph.2002.7118
[26] Sherwin S (1999) Dispersion analysis of the continuous and discontinuous Galerkin formulations. In: Cockburn B, Karniadakis GE, Shu C-W (eds) Lecture notes in computational science and engineering: discontinuous Galerkin methods- theory, computation and applications. Springer, pp 425–432
[27] Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J Comp Phys 131:267–279 · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[28] Davis TA (2005) UMFPACK version 4.6 user guide. University of Florida pp 1–133
[29] Carpenter MH, Kennedy CA (1994) Fourth order 2N-storage Runge-Kutta scheme. Technical report NASA-TM-109112, NASA Langley Research Center, VA
[30] Fischer P, Mullen JS (2001) Filter-based stabilization of spectral element methods. C R Acad Sci Paris 332:265–270 · Zbl 0990.76064
[31] Savitzky A, Golay MJE (1964) Smoothening and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639 · doi:10.1021/ac60214a047
[32] Larsen J, Dancy H (1983) Open boundaries in short wave simulations - a new approach. Coastal Engng 7:285–297 · doi:10.1016/0378-3839(83)90022-4
[33] Beji S, Battjes JA (1994) Numerical simulation of nonlinear-wave propagation over a bar. Coastal Engng 23:1–16 · doi:10.1016/0378-3839(94)90012-4
[34] Luth HR, Klopman B, Kitou N (1994) Projects 13G: kinematics of waves breaking partially on an offshore bar: LDV measurements for waves with and without a net onshore current. Technical report H1573, Delft Hydraulics
[35] Gobbi MF, Kirby JT (1999) Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engng 37:57–96 · doi:10.1016/S0378-3839(99)00015-0
[36] Tanaka M (1986) The stability of solitary waves. J Phys Fluids 29:650–655 · Zbl 0605.76025 · doi:10.1063/1.865459
[37] Cooker MJ, Weidman PD, Bale DS (1997) Reflection of a high-amplitude solitary wave at a vertical wall. J Fluid Mech 342:141–158 · Zbl 0911.76012 · doi:10.1017/S002211209700551X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.