×

Lehmer’s problem on elliptic curves with complex multiplications. (Problème de Lehmer sur les courbes elliptiques à multiplications complexes.) (French. English summary) Zbl 1422.11145

Summary: We consider the problem of lower bounds for the canonical height on elliptic curves, aiming for the conjecture of Lehmer. Our main result is an explicit version of a theorem of Laurent (who proved this conjecture for elliptic curves with CM up to an \(\varepsilon \) exponent) using arithmetic intersection, emphasizing the dependence on parameters linked to the elliptic curve; if GRH holds, then our lower bound for the canonical height of a non-torsion point only depends on the relative degree of the point, and on the degree of the base field of its elliptic curve. We also provide explicit estimates for the Faltings’ height of an elliptic curve with CM, thanks to an explicit version of Dirichlet’s theorem on arithmetic progressions, in some sense.

MSC:

11G50 Heights
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J.-H. Ahn and S.-H. Kwon, Some explicit zero-free regions for Hecke L-functions, J. Number Theory 145 (2014), 433-473. · Zbl 1317.11115
[2] M. Baker and C. Petsche, Global discrepancy and small points on elliptic curves, Int. Math. Res. Notices 2005, no. 61, 3791-3834. · Zbl 1120.11025
[3] P. Colmez, Sur la hauteur de Faltings des variétés abéliennes à multiplication complexe, Compos. Math. 111 (1998), 359-368. · Zbl 0918.11025
[4] G. Cornell and J. H. Silverman, Arithmetic Geometry, Springer, New York, 1986. · Zbl 0863.65008
[5] H. Davenport, Multiplicative Number Theory, Markham, Chicago, IL, 1967. · Zbl 0159.06303
[6] S. David, Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64 (1997), 104-129. · Zbl 0873.11035
[7] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), 387-424. · Zbl 0873.11035
[8] A. Galateau and V. Mahé, Some consequences of Masser’s counting theorem on elliptic curves, Math. Z. 285 (2017), 613-629. · Zbl 0559.14005
[9] É. Gaudron et G. Rémond, Polarisations et isogénies, Duke Math. J. 163 (2014), 2057-2108. · Zbl 1381.11049
[10] A. Granville and H. M. Stark, abc implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math. 139 (2000), 509-523. · Zbl 0967.11033
[11] P. Habegger, Weakly bounded height on modular curves, Acta Math. Vietnam. 35 (2010), 43-69. · Zbl 0967.11033
[12] M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419-450. · Zbl 0657.14018
[13] M. Hindry et J. Silverman, Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 97-100. · Zbl 1332.11082
[14] M. Hindry and J. H. Silverman, Diophantine Geometry. An Introduction, Grad. Texts in Math. 201, Springer, New York, 2000. · Zbl 0948.11023
[15] P. Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. 107 (1985), 23-38. · Zbl 0593.14004
[16] Y. Ihara, V. K. Murty and M. Shimura, On the logarithmic derivatives of Dirichlet L-functions at s = 1, Acta Arith. 137 (2009), 253-276. · Zbl 1213.11159
[17] H. Kadiri, An explicit zero-free region for Dirichlet L-functions, thèse, Univ. de Lille 1, 2002. · JFM 28.0871.12
[18] H. Kadiri, Short effective intervals containing primes in arithmetic progressions and the seven cubes problem, Math. Comp. 77 (2008), 1733-1748. · Zbl 1208.11111
[19] S. Lang, Elliptic Curves: Diophantine Analysis, Grundlehren Math. Wiss. 231, Springer, Berlin, 1978. · Zbl 0388.10001
[20] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983. · Zbl 0528.14013
[21] S. Lang, Introduction to Arakelov Theory, Springer, New York, 1988. · Zbl 0667.14001
[22] M. Laurent, Minoration de la hauteur de Néron-Tate, dans : Seminar on Number Theory, Paris 1981-82, Progr. Math. 38, Birkhäuser Boston, Boston, MA, 1983, 137-151. · Zbl 0521.14010
[23] D. W. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France 117 (1989), 247-265. · Zbl 0723.14026
[24] C. Petsche, Small rational points on elliptic curves over number fields, New York J. Math. 12 (2006), 257-268. · Zbl 1163.11327
[25] C. Pomerance, Remarks on the Pólya-Vinogradov inequality, Integers 11 (2011), 531-542. · Zbl 1278.11080
[26] O. Ramaré, Eigenvalues in the large sieve inequality, Funct. Approx. Comment. Math. 37 (2007), 399-427. · Zbl 1181.11059
[27] N. Ratazzi, Théorème de Dobrowolski-Laurent pour les extensions abéliennes sur une courbe elliptique à multiplication complexe, Int. Math. Res. Notices 2004, no. 58, 3121-3152. · Zbl 1091.11020
[28] G. Rémond, Variétés abéliennes et ordres maximaux, Rev. Mat. Iberoamer. 33 (2017), 1173-1195. · Zbl 1441.11157
[29] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. · Zbl 0122.05001
[30] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401.
[31] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Applications to Number Theory, Publ. Math. Soc. Japan 6, Math. Soc. Japan, Tokyo, 1961. · Zbl 0112.03502
[32] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer, New York, 1994. · Zbl 0911.14015
[33] J. H. Silverman, The Arithmetic of Elliptic Curves, 2èmeéd., Grad. Texts in Math. 106, Springer, Dordrecht, 2009. · Zbl 1194.11005
[34] L. Szpiro, Sur les propriétés numériques du dualisant relatif d’une surface arithmétique, dans : The Grothendieck Festschrift, Vol. III, Progr. Math. 88, Birkhäuser Boston, Boston, MA, 1990, 229-246. · Zbl 0759.14018
[35] H. Tôyama, A note on the different of the composed field, K¯odai Math. Sem. Rep. 7 (1955), 43-44. · Zbl 0065.02403
[36] T. S. Trudgian, An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions, Math. Comp. 84 (2015), 1439-1450. · Zbl 1332.11082
[37] B. Winckler, Intersection arithmétique et problème de Lehmer elliptique, thèse, Univ. de Bordeaux, 2015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.