×

Elastic deformation of twinned microstructures. (English) Zbl 1404.74135

Summary: Many crystalline materials exhibit twinned microstructures, where well-defined orientation relationships define the special symmetry between different, elastically anisotropic twin variants. When such twins are subjected to external loading, additional internal stresses necessarily occur at the twin boundaries in order to maintain compatibility. These compatibility stresses are constant inside each variant in repeating stacks of twins and considerably affect the local stress state. In this paper, we use anisotropic linear elasticity to derive general analytical solutions for compatibility stresses in a stack of twin variants in arbitrary materials, for arbitrary variant volume fractions and twin types, subjected to arbitrary applied stresses. By considering two examples, growth twins in electrodeposited Cu and B19’ martensite twins in the shape memory alloy NiTi, we further demonstrate that compatibility stresses can considerably alter the preferred slip systems for dislocation plasticity as well as the effective macroscopic behaviour of twinned microstructures.

MSC:

74M25 Micromechanics of solids
74N05 Crystals in solids
82D25 Statistical mechanics of crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peralta P, Laird C. (1997) Compatibility stresses in fatigued bicrystals: dependence on misorientation and small plastic deformations. Acta Mater. 45, 5129-5143. (doi:10.1016/S1359-6454(97)00184-5) · doi:10.1016/S1359-6454(97)00184-5
[2] Heinz A, Neumann P. (1990) Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall. Mater. 38, 1933-1940. (doi:10.1016/0956-7151(90)90305-Z) · doi:10.1016/0956-7151(90)90305-Z
[3] Sun X-Y, Taupin V, Fressengeas C, Cordier P. (2016) Continuous description of the atomic structure of grain boundaries using dislocation and generalized-disclination density fields. Int. J. Plast. 77, 75-89. (doi:10.1016/j.ijplas.2015.10.003) · doi:10.1016/j.ijplas.2015.10.003
[4] Eshelby JD. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376-396. (doi:10.1098/rspa.1957.0133) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[5] Eshelby JD. (1959) The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561-569. (doi:10.1098/rspa.1959.0173) · Zbl 0092.42001 · doi:10.1098/rspa.1959.0173
[6] Aust K., Chen N. (1954) Effect of orientation difference on the plastic deformation of aluminum bicrystals. Acta Metall. 2, 632-638. (doi:10.1016/0001-6160(54)90199-6) · doi:10.1016/0001-6160(54)90199-6
[7] Mura T. (1987) Micromechanics of defects in solids. Dordrecht, The Netherlands: Springer.
[8] Tiba I, Richeton T, Motz C, Vehoff H, Berbenni S. (2015) Incompatibility stresses at grain boundaries in Ni bicrystalline micropillars analyzed by an anisotropic model and slip activity. Acta Mater. 83, 227-238. (doi:10.1016/j.actamat.2014.09.033) · doi:10.1016/j.actamat.2014.09.033
[9] Kheradmand N, Vehoff H, Barnoush A. (2013) An insight into the role of the grain boundary in plastic deformation by means of a bicrystalline pillar compression test and atomistic simulation. Acta Mater. 61, 7454-7465. (doi:10.1016/j.actamat.2013.08.056) · doi:10.1016/j.actamat.2013.08.056
[10] Kunz A, Pathak S, Greer JR. (2011) Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 59, 4416-4424. (doi:10.1016/j.actamat.2011.03.065) · doi:10.1016/j.actamat.2011.03.065
[11] Imrich PJ, Kirchlechner C, Kiener D, Dehm G. (2015) Internal and external stresses: in situ TEM compression of Cu bicrystals containing a twin boundary. Scr. Mater. 100, 94-97. (doi:10.1016/j.scriptamat.2014.12.023) · doi:10.1016/j.scriptamat.2014.12.023
[12] Li LL, An XH, Imrich PJ, Zhang P, Zhang ZJ, Dehm G, Zhang ZF. (2013) Microcompression and cyclic deformation behaviors of coaxial copper bicrystals with a single twin boundary. Scr. Mater. 69, 199-202. (doi:10.1016/j.scriptamat.2013.04.004) · doi:10.1016/j.scriptamat.2013.04.004
[13] Richeton T, Berbenni S. (2013) Effects of heterogeneous elasticity coupled to plasticity on stresses and lattice rotations in bicrystals: a field dislocation mechanics viewpoint. Eur. J. Mech. A 37, 231-247. (doi:10.1016/j.euromechsol.2012.06.010) · Zbl 1347.74017 · doi:10.1016/j.euromechsol.2012.06.010
[14] Gonzalez D, Simonovski I, Withers PJ, Quinta da Fonseca J. (2014) Modelling the effect of elastic and plastic anisotropies on stresses at grain boundaries. Int. J. Plast. 61, 49-63. (doi:10.1016/j.ijplas.2014.03.012) · doi:10.1016/j.ijplas.2014.03.012
[15] Guo Y-B, Xu T, Li M. (2013) Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials. Acta Mater. 61, 4974-4983. (doi:10.1016/j.actamat.2013.04.048) · doi:10.1016/j.actamat.2013.04.048
[16] Gray NH, Anderson JB. (1982) Polysynthetic twin width distributions in anorthoclase. Lithos 15, 27-37. (doi:10.1016/S0024-4937(82)80003-0) · doi:10.1016/S0024-4937(82)80003-0
[17] Schumann H. (1979) Kristallgeometrie, Einführung in die Theorie der Gittertransformationen metallischer Werkstoffe. Dt. Verl. für Grundstoffindustrie, Leipzig.
[18] Chou TW, Hirth JP. (1970) Stress distribution in a bimaterial plate under uniform external loadings. J. Compos. Mater. 4, 102-112. (doi:10.1177/002199837000400109) · doi:10.1177/002199837000400109
[19] Hashimoto K, Margolin H. (1983) The role of elastic interaction stresses on the onset of slip in polycrystalline alpha brass. I. Experimental determination of operating slip systems and qualitative analysis. Acta Metall. 31, 773-785. (doi:10.1016/0001-6160(83)90093-7) · doi:10.1016/0001-6160(83)90093-7
[20] Hashimoto K, Margolin H. (1983) The role of elastic interaction stresses on the onset of slip in polycrystalline alpha brass—II. Rationalization of slip behavior. Acta Metall. 31, 787-800. (doi:10.1016/0001-6160(83)90094-9) · doi:10.1016/0001-6160(83)90094-9
[21] Meyers MA, Ashworth E. (1982) A model for the effect of grain size on the yield stress of metals. Philos. Mag. A 46, 737-759. (doi:10.1080/01418618208236928) · doi:10.1080/01418618208236928
[22] Pokluda J, Černý M, Šob M, Umeno Y. (2015) Ab initio calculations of mechanical properties: methods and applications. Prog. Mater. Sci. 73, 127-158. (doi:10.1016/j.pmatsci.2015.04.001) · doi:10.1016/j.pmatsci.2015.04.001
[23] Gemperlová J, Paidar V, Kroupa F. (1989) Compatibility stresses in deformed bicrystals. Czech. J. Phys. 39, 427-446. (doi:10.1007/BF01597801) · doi:10.1007/BF01597801
[24] Christian JW, Mahajan S. (1995) Deformation twinning. Prog. Mater. Sci. 39, 1-157. (doi:10.1016/0079-6425(94)00007-7) · doi:10.1016/0079-6425(94)00007-7
[25] Kauffmann-Weiss S, Hahn S, Weigelt C, Schultz L, Wagner MF-X, Fähler S. (2017) Growth, microstructure and thermal transformation behaviour of epitaxial Ni-Ti films. Acta Mater. 132, 255-263. (doi:10.1016/j.actamat.2017.04.049) · doi:10.1016/j.actamat.2017.04.049
[26] Nye JF.(1957) Physical properties of crystals: their representation by tensors and matrices. Oxford, UK: Clarendon Press. · Zbl 0079.22601
[27] Ting TCT. (1996) Anisotropic elasticity, theory and applications. New York, NY: Oxford University Press.
[28] Christian JW. (2002) The theory of transformations in metals and alloys, pp. 859-960. Oxford, UK: Pergamon.
[29] Sutton AP, Balluffi RW. (1996) Interfaces in crystalline materials. Oxford, UK: Clarendon Press.
[30] Venables JA. (1961) Deformation twinning in face-centred cubic metals. Philos. Mag. 6, 379-396. (doi:10.1080/14786436108235892) · doi:10.1080/14786436108235892
[31] Venables J. (1964) The nucleation and propagation of deformation twins. J. Phys. Chem. Solids 25, 693-700. (doi:10.1016/0022-3697(64)90178-7) · doi:10.1016/0022-3697(64)90178-7
[32] Han K, Walsh RP, Ishmaku A, Toplosky V, Brandao L, Embury JD. (2004) High strength and high electrical conductivity bulk Cu. Philos. Mag. 84, 3705-3716. (doi:10.1080/14786430412331293496) · doi:10.1080/14786430412331293496
[33] Lu L. (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304, 422-426. (doi:10.1126/science.1092905) · doi:10.1126/science.1092905
[34] Dao M, Lu L, Shen YF, Suresh S. (2006) Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54, 5421-5432. (doi:10.1016/j.actamat.2006.06.062) · doi:10.1016/j.actamat.2006.06.062
[35] Zhu T, Li J, Samanta A, Kim HG, Suresh S. (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl Acad. Sci. USA 104, 3031-3036. (doi:10.1073/pnas.0611097104) · doi:10.1073/pnas.0611097104
[36] You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L. (2013) Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217-227. (doi:10.1016/j.actamat.2012.09.052) · doi:10.1016/j.actamat.2012.09.052
[37] Thompson N. (1953) Dislocation nodes in face-centred cubic lattices. Proc. R. Soc. Lond. B 66, 481-492. (doi:10.1088/0370-1301/66/6/304) · Zbl 0050.44905 · doi:10.1088/0370-1301/66/6/304
[38] Kocks UF. (1970) The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1, 1121-1143. (doi:10.1007/BF02900224) · doi:10.1007/BF02900224
[39] Overton WC, Gaffney J. (1955) Temperature variation of the elastic constants of cubic elements. I. copper . Phys. Rev. 98, 969-977. (doi:10.1103/PhysRev.98.969) · doi:10.1103/PhysRev.98.969
[40] Wagner MF-X, Windl W. (2008) Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater. 56, 6232-6245. (doi:10.1016/j.actamat.2008.08.043) · doi:10.1016/j.actamat.2008.08.043
[41] Schmid E, Boas W.(1935) Kristallplastizität. Mit Besonderer Berücksichtigung der Metalle. Berlin, Germany: Springer-Verlag.
[42] Grimsditch M, Nizzoli F. (1986) Effective elastic constants of superlattices of any symmetry. Phys. Rev. B 33, 5891-5892. (doi:10.1103/PhysRevB.33.5891) · doi:10.1103/PhysRevB.33.5891
[43] Otsuka K, Wayman CM.(1999) Shape memory materials. Cambridge, UK: Cambridge University Press.
[44] Bhattacharya K.(2003) Microstructure of martensite, why it forms and how it gives rise to the shape-memory effect. Oxford, UK: Oxford University Press. · Zbl 1109.74002
[45] Otsuka K, Ren X. (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511-678. (doi:10.1016/j.pmatsci.2004.10.001) · doi:10.1016/j.pmatsci.2004.10.001
[46] Stebner AP, Brown DW, Brinson LC. (2013) Young’s modulus evolution and texture-based elastic-inelastic strain partitioning during large uniaxial deformations of monoclinic nickel-titanium. Acta Mater. 61, 1944-1956. (doi:10.1016/j.actamat.2012.12.015) · doi:10.1016/j.actamat.2012.12.015
[47] Stebner AP, Brown DW, Brinson LC. (2013) Measurement of elastic constants of monoclinic nickel-titanium and validation of first principles calculations. Appl. Phys. Lett. 102, 211908. (doi:10.1063/1.4808040) · doi:10.1063/1.4808040
[48] Stebner, AP., Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW, Garg A, Brinson LC. (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel-titanium during large uniaxial deformations measured via in-situ neutron diffraction. J. Mech. Phys. Solids 61, 2302-2330. (doi:10.1016/j.jmps.2013.05.008) · doi:10.1016/j.jmps.2013.05.008
[49] Hill R. · doi:10.1088/0370-1298/65/5/307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.