×

Fredholm integral relation between compound estimation and prediction (FIRCEP). (English) Zbl 1442.62176

Summary: We discuss the following problem: Given a set of information criteria for optimal designs, the numerical and computational complexity may drastically differ from one criterion to another. A general novel methodology, called the “FIRCEP” is introduced, and shown to work satisfactorily on a variety of problems relating weighted estimation criterion and Integrated mean square prediction error (IMSPE) prediction criteria in framework of stochastic process. The FIRCEP is shown to be identifying such relationship and providing the exact relations between estimation and prediction for regression problems with correlated errors, without necessity to have known eigenexpansion and truncation methodology. The latter one is the main drawback for automation of complexity reduction algorithms for IMSPE optimization for kernels with unknown eigenexpansion. Thus FIRCEP fills the gap of missing exact method for general kernel satisfying mild regularity conditions in order to develop relation between a class of integrated compound criteria and IMSPE. The exposition proceeds by a series of numerical and real data examples.

MSC:

62K05 Optimal statistical designs
62H12 Estimation in multivariate analysis
62M20 Inference from stochastic processes and prediction
60G07 General theory of stochastic processes
45B05 Fredholm integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Santner, T. J.; Williams, B. J.; Notz, W. I., The Design and Analysis of Computer Experiments (2003), New York, NY: Springer, New York, NY · Zbl 1041.62068
[2] Kaipio, J.; Somersalo, E., Statistical inverse problems: discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198, 2, 493-504 (2007) · Zbl 1101.65008 · doi:10.1016/j.cam.2005.09.027
[3] Gauthier, B.; Pronzato, L., Convex relaxation for IMSE optimal design in random-field models, Comput. Stat. Data Anal., 113, 375-394 (2017) · Zbl 1464.62078 · doi:10.1016/j.csda.2016.10.018
[4] Sacks, J.; Welch, W. J.; Mitchell, T. J.; Wynn, H. P., Design and analysis of computer experiments. With comments and a rejoinder by the authors, Statist. Sci., 4, 4, 409-435 (1989) · Zbl 0955.62619
[5] Lu, Y.; Genant, H. K.; Shepherd, J.; Zhao, S.; Mathur, A.; Fuerst, T. P.; Cummings, S. R., Classification of osteoporosis based on bone mineral densities, J. Bone Miner. Res. Research., 16, 5, 901-910 (2001) · doi:10.1359/jbmr.2001.16.5.901
[6] Pázman, A., Information contained in design points of experiments with correlated observations, Kybernetika., 46, 4, 771-783 (2010) · Zbl 1201.62105
[7] Müller, W. G.; Stehlík, M., Compound optimal spatial designs, Environmetrics., 21, 3-4, 354-364 (2009) · doi:10.1002/env.1009
[8] Stehlík, M.; López-Fidalgo, J.; Casero-Alonso, V.; Bukina, E., Robust integral compounding criteria for trend and correlation structures, Stoch. Environ. Res. Risk Assess. Assessment., 29, 2, 379-395 (2015) · doi:10.1007/s00477-014-0892-5
[9] Kiseľák, J.; Stehlík, M., Equidistant and \(####\)-optimal designs for parameters of Ornstein-Uhlenbeck process, Stat. Probab. Lett., 78, 12, 1388-1396 (2008) · Zbl 1152.62049
[10] Crary, S. B., Design of computer experiments for metamodel generation, Analog Integrated Circuits and Signal Processing., 32, 1, 7-16 (2002) · doi:10.1023/A:1016063422605
[11] Biedermann, S.; Bissantz, N.; Dette, H.; Jones, E., Optimal designs for indirect regression, Inverse Probl., 27, 10, 19 (2011) · Zbl 1225.62105 · doi:10.1088/0266-5611/27/10/105003
[12] Gauthier, B.; Pronzato, L., Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models, SIAM/ASA J. Uncertainty Quantification Quantification., 2, 1, 805-825 (2014) · Zbl 1308.62158 · doi:10.1137/130928534
[13] Baldi Antognini, A.; Zagoraiou, M., Exact optimal designs for computer experiments via kriging metamodelling, J. Stat. Plann. Inference., 140, 9, 2607-2617 (2010) · Zbl 1188.62214 · doi:10.1016/j.jspi.2010.03.027
[14] Sahoo, P.; Riedel, T., Mean Value Theorems and Functional Equations (1998), World Scientific · Zbl 0980.39015
[15] Jerri, A. J., Introduction to Integral Equations with Applications (1999), New York, NY: Wiley, New York, NY · Zbl 0938.45001
[16] Polyanin, A. D.; Manzhirov, A. V., Handbook of Integral Equations (2008), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1154.45001
[17] Tikhonov, A.; Arsenin, V., Solutions of Ill-Posed Problems. Scripta Series in Mathematics (1977), Winston · Zbl 0354.65028
[18] Baran, S.; Sikolya, K.; Stehlík, M., On the optimal designs for the prediction of Ornstein-Uhlenbeck sheets, Stat. Probab. Lett., 83, 6, 1580-1587 (2013) · Zbl 1356.62096 · doi:10.1016/j.spl.2013.03.003
[19] Baran, S.; Stehlík, M., Optimal designs for parameters of shifted Ornstein-Uhlenbeck sheets measured on monotonic sets, Stat. Probab. Lett., 99, 114-124 (2015) · Zbl 1320.62184 · doi:10.1016/j.spl.2015.01.006
[20] Cummings, S.; Browner, W.; Cummings, S.; Black, D.; Nevitt, M.; Browner, W.; Genant, H.; Cauley, J.; Ensrud, K.; Scott, J.; Vogt, T., Bone density at various sites for prediction of hip fractures, The Lancet., 341, 8837, 72-75 (1993) · doi:10.1016/0140-6736(93)92555-8
[21] Cummings, S. R.; Nevitt, M. C.; Browner, W. S.; Stone, K.; Fox, K. M.; Ensrud, K. E.; Cauley, J.; Black, D.; Vogt, T. M., Risk factors for hip fracture in white women, N Engl. J. Med. Medicine., 332, 12, 767-774 (1995) · doi:10.1056/NEJM199503233321202
[22] Kiefer, J.; Wolfowitz, J., The equivalence of two extremum problems, Can. J. Math. Math., 12, 363-366 (1960) · Zbl 0093.15602 · doi:10.4153/CJM-1960-030-4
[23] Rao, C. R., On the distance between two populations, Sankhyā. The Indian Journal of Statistics, 9, 246-248 (1949)
[24] Amari, S.-I.; Barndorff-Nielsen, O. E.; Kass, R. E.; Lauritzen, S. L.; Rao, C. R., Differential Geometry in Statistical Inference, 10, ch. 2: Differential Geometrical Theory of Statistics, i-240 (1987) · Zbl 0694.62001
[25] Liese, F.; Vajda, I., On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory., 52, 10, 4394-4412 (2006) · Zbl 1287.94025 · doi:10.1109/TIT.2006.881731
[26] DeGroot, M., Optimal Statistical Décisions. McGraw-Hill Series in Probability and Statistics (1969), McGraw-Hill
[27] DeGroot, M. H., Uncertainty, information, and sequential experiments, Ann. Math. Statist., 33, 2, 404-419 (1962) · Zbl 0151.22803 · doi:10.1214/aoms/1177704567
[28] Györfi, L.; Nemetz, T., f-dissimilarity: a generalization of the affinity of several distributions, Ann. Inst. Stat. Math., 30, 1, 105-113 (1978) · Zbl 0453.62014 · doi:10.1007/BF02480206
[29] Rockafellar, R., Convex Analysis. Princeton Landmarks in Mathematics and Physics (1970), Princeton University Press · Zbl 0193.18401
[30] Lax, P., Functional Analysis. Pure and Applied Mathematics (2002), Wiley · Zbl 1009.47001
[31] Groetsch, C. W., Integral equations of the first kind, inverse problems and regularization: a crash course, J. Phys: Conf. Ser. Series, 73, 012001 (2007) · doi:10.1088/1742-6596/73/1/012001
[32] Groetsch, C., Inverse Problems in the Mathematical Sciences. Theory and Practice of Applied Geophysics Series (1993), Vieweg · Zbl 0779.45001
[33] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, 120 (2011), Berlin: Springer, Berlin · Zbl 1213.35004
[34] Baker, C. T. H.; Fox, L.; Mayers, D. F.; Wright, K., Numerical solution of fredholm integral equations of first kind, Comput. J., 7, 2, 141-148 (1964) · Zbl 0127.08403 · doi:10.1093/comjnl/7.2.141
[35] Hansen, P. C., Numerical tools for analysis and solution of fredholm integral equations of the first kind, Inverse Probl., 8, 6, 849-872 (1992) · Zbl 0782.65153 · doi:10.1088/0266-5611/8/6/005
[36] Delves, L.; Mohamed, J., Computational Methods for Integral Equations (1988), Cambridge University Press · Zbl 0662.65111
[37] Saitoh, S., Integral Transforms, Reproducing Kernels and Their Applications. Chapman & Hall/CRC Research Notes in Mathematics Series (1997), Taylor & Francis · Zbl 0891.44001
[38] Krejn, M. G.; Danskin, J. M., Am. Math. Soc., Transl., II. Ser., 34, Hermitian-positive kernels on homogeneous spaces. I, II (1963)
[39] Ansari, A.; Darani, M. A., New inversion techniques for some integral transforms via the generalized product theorem of the mellin transform, ISRN Appl. Math., 2012, 1 (2012) · Zbl 1264.44003 · doi:10.5402/2012/608712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.