×

An optimization approach to parameter identification in variational inequalities of second kind. (English) Zbl 1421.90146

Summary: This paper is concerned with the inverse problem of parameter identification in variational inequalities of the second kind that does not only treat the parameter linked to a bilinear form, but importantly also the parameter linked to a nonlinear non-smooth function. A new abstract framework covers frictional contact as well as other non-smooth problems from continuum mechanics. We investigate the dependance of the solution of the forward problem on these parameters and prove Lipschitz continuity results. We formulate an optimization approach to the parameter identification problem and provide a solvability result. Moreover we establish a convergence result for finite dimensional approximation in the optimization approach.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ben Abda, A; Chaabane, S; Dabaghi, F; Jaoua, M, On a non-linear geometrical inverse problem of Signorini type: identifiability and stability, Math. Math. Appl. Sci., 21, 1379-1398, (1998) · Zbl 0936.35189 · doi:10.1002/(SICI)1099-1476(199810)21:15<1379::AID-MMA999>3.0.CO;2-F
[2] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier, Amsterdam (2003) · Zbl 1098.46001
[3] Adly, S., Bergounioux, M., Ait Mansour, M.: Optimal control of a quasi-variational obstacle problem. J. Glob. Optim. 47(3), 421-435 (2010) · Zbl 1207.49029
[4] Aßmann, U; Rösch, A, Identification of an unknown parameter function in the main part of an elliptic partial differential equation, Z. Anal. Anwend., 32, 163-178, (2013) · Zbl 1264.35278 · doi:10.4171/ZAA/1479
[5] Ayadi, M., Baffico, L., Khaled Gdoura, M., Sassi, T.: Error estimates for Stokes problem with Tresca friction conditions. ESAIM Math. Model. Numer. Anal. 48, 1413-1429 (2014) · Zbl 1381.76153
[6] Baffico, L; Sassi, T, Existence result for a fluid structure interaction problem with friction type slip boundary condition, ZAMM Z. Angew. Math. Mech., 95, 831-844, (2015) · Zbl 1329.35239 · doi:10.1002/zamm.201300301
[7] Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Birkhäuser Boston Inc, Boston (1989) · Zbl 0695.93020 · doi:10.1007/978-1-4612-3700-6
[8] Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig (1987) · Zbl 0623.35008 · doi:10.1007/978-3-322-83967-1
[9] Daniele, P.: Dynamic Networks and Evolutionary Variational Inequalities. Edward Elgar, Cheltenham (2006) · Zbl 1117.49002
[10] Fujita, H, A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, RIMS Kokyuroku, 888, 199-216, (1994) · Zbl 0939.76527
[11] Glowinski, R.: Numerical methods for nonlinear variational problems. Springer, Berlin (2008). (Reprint of the 1984 original) · Zbl 1139.65050
[12] Glowinski, R., Wachs, A.: On the Numerical Simulation of Viscoplastic Fluid Flow. Handbook of Numerical Analysis. Vol XVI. Special Volume: Numerical Methods for non-Newtonian Fluids. Elsevier, Amsterdam (2017) · Zbl 1330.35533
[13] Gockenbach, MS; Khan, AA, An abstract framework for elliptic inverse problems. I. an output least-squares approach, Math. Mech. Solids, 12, 259-276, (2007) · Zbl 1153.74021 · doi:10.1177/1081286505055758
[14] González, GA, Theoretical framework of an identification problem for an elliptic variational inequality with bilateral restrictions, J. Comput. Appl. Math., 197, 245-252, (2006) · Zbl 1259.49013 · doi:10.1016/j.cam.2005.11.002
[15] Gwinner, J, Finite-element convergence for contact problems in plane linear elastostatics, Q. Appl. Math., 50, 11-25, (1992) · Zbl 0743.73025 · doi:10.1090/qam/1146620
[16] Gwinner, J.: Time dependent variational inequalities—some recent trends. In: Equilibrium Problems and Variational Models (Erice, 2000), Nonconvex Optim. Appl., vol. 68, pp. 225-264. Kluwer Academy Publisher, Norwell, MA (2003) · Zbl 1069.49005
[17] Gwinner, J, \(hp\)-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics, J. Comput. Appl. Math., 254, 175-184, (2013) · Zbl 1290.74041 · doi:10.1016/j.cam.2013.03.013
[18] Gwinner, J; Ovcharova, N, From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics, Optimization, 64, 1683-1702, (2015) · Zbl 1337.49011 · doi:10.1080/02331934.2014.1001758
[19] Hasanov, A, Inverse coefficient problems for elliptic variational inequalities with a nonlinear monotone operator, Inverse Problems, 14, 1151-1169, (1998) · Zbl 0912.35157 · doi:10.1088/0266-5611/14/5/005
[20] Hintermüller, M, Inverse coefficient problems for variational inequalities: optimality conditions and numerical realization, M2AN math, Model. Numer. Anal., 35, 129-152, (2001) · Zbl 0978.65054 · doi:10.1051/m2an:2001109
[21] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Translated from the Slovak by J. Jarník, Springer, New York (1988) · Zbl 0654.73019 · doi:10.1007/978-1-4612-1048-1
[22] Hoffmann, KH; Sprekels, J, On the identification of parameters in general variational inequalities by asymptotic regularization, SIAM J. Math. Anal., 17, 1198-1217, (1986) · Zbl 0652.35103 · doi:10.1137/0517083
[23] Jadamba, B; Khan, AA; Rus, G; Sama, M; Winkler, B, A new convex inversion framework for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of predicting tumor location, SIAM J. Appl. Math., 74, 1486-1510, (2014) · Zbl 1330.35533 · doi:10.1137/130928261
[24] Kabanikhin, S.: Inverse and Ill-Posed Problems. de Gruyter, Berlin (2012) · Zbl 1247.65077
[25] Kinderlehrer, D. and Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Reprint of the 1980 original (2000) · Zbl 0988.49003
[26] Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011) · Zbl 1213.35004 · doi:10.1007/978-1-4419-8474-6
[27] Kluge, R, On some parameter determination problems in variational inequalities and quasi-variational inequalities, Math. Nachr., 89, 127-148, (1979) · Zbl 0426.49007 · doi:10.1002/mana.19790890111
[28] Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 3rd edn. Springer, New York (2014) · Zbl 1328.45001
[29] Le, Vy-Khoi., Ang, D.D.: Contact of a viscoelastic body with a rough rigid surface and identification of friction coefficients. J. Inv. Ill-Posed Problems 9, 75-94 (2001) · Zbl 0980.35177
[30] Maugeri, A; Scrimali, L, Global Lipschitz continuity of solutions to parameterized variational inequalities, Boll. Unione Mat. Ital., 2, 45-69, (2009) · Zbl 1170.49011
[31] Richter, M.: Inverse Probleme. Theorie und Anwendungsbeispiele. Springer, Heidelberg, Springer Spektrum, Grundlagen (2015) · Zbl 1331.65083 · doi:10.1007/978-3-662-45811-2
[32] Rieder, A.: Keine Probleme mit Inversen Problemen. Vieweg, Braunschweig (2003) · Zbl 1057.65035 · doi:10.1007/978-3-322-80234-7
[33] Yên, ND, Hölder continuity of solutions to a parametric variational inequality., Appl. Math. Optim., 31, 245-255, (1995) · Zbl 0821.49011 · doi:10.1007/BF01215992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.