×

Some mathematical, epistemological, and historical reflections on the relationship between geometry and reality, space-time theory and the geometrization of theoretical physics, from Riemann to Weyl and beyond. (English) Zbl 1428.00009

Summary: The history and philosophy of science are destined to play a fundamental role in an epoch marked by a major scientific revolution. This ongoing revolution, principally affecting mathematics and physics, entails a profound upheaval of our conception of space, space-time, and, consequently, of natural laws themselves. Briefly, this revolution can be summarized by the following two trends: (1) by the search for a unified theory of the four fundamental forces of nature, which are known, as of now, as gravity, electromagnetism, and strong and weak nuclear forces; (2) by the search for new mathematical concepts capable of elucidating and therefore explaining such a relationship. In fact, the first search is essentially dependent on the second; that is to say, that in order for a new theory of physics to come to light, the development of a deeper geometric theory capable of explaining the structure of space-time on a quantum scale appears to be necessary. On careful consideration, we notice that both of these developments converge in the direction of a unitary and fundamental tendency of modern science – which is the geometrization of theoretical physics and of natural sciences. This new emergent situation carries within it a profound conceptual change, affecting the way in which relations are conceived of, first and foremost, between mathematics and physics. This new paradigm can be summed up by the intimately interdependent points: (1) the immense variety of physical phenomena and of natural forms follows from the equally infinite variety of geometric and topological objects that can be made out in space and from which space is made up; (2) the second point, which ensues from the former one and which is of great historical and epistemological significance, is that mathematics is involved in rather than applied to phenomena. In other words, phenomena are effects that emerge from the geometrical structure of space-time. There is no doubt that this new conception of the relationship between the universe of mathematical ideas and objects and the world of natural phenomena is the true scientific revolution of our century, of great conceptual importance, and consequently, capable of changing our view of science and of nature at one and the same time. It is all at once of a scientific, philosophical and aesthetic order.

MSC:

00A30 Philosophy of mathematics
53Z05 Applications of differential geometry to physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, R. H., & Shaw, C. D. (1983). Dynamics: The geometry of behavior. Santa Cruz: Aerial Press.
[2] Ageno, M. (1960). Some remarks on the shape of viruses. Nuovo Cimento (Suppl.),18, 166-175.
[3] Appelquist, T., Chodos, A., & Freund, P. (Eds.). (1987). Modern Kaluza-Klein theories. Reading: Addison-Wesley Publishing Company. · Zbl 0984.83501
[4] Atiyah, M. (1979). Geometry of Yang-Mills fields. Pisa: Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore. · Zbl 0435.58001
[5] Atiyah, M. (1988). Topological quantum field theories. Institut des Hautes Etudes Scientifiques, Publications Mathématiques,68, 175-176. · Zbl 0692.53053
[6] Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Vrin.
[7] Baez, J., & Muniain, J. P. (1994). Gauge fields, knots and gravity. Singapore: World Scientific. · Zbl 0843.57001
[8] Bennequin, D. (1994). Questions de physique galoisienne. In Passions des formes. Dynamique qualitative, sémiophysique et intelligibilité, devoted to the work of René Thom, ENS Editions Fontanay St-Cloud (pp. 311-410).
[9] Blum, H. (1974). A geometry for biology. Annals of the New York Academy of Sciences,231, 19-30.
[10] Bohm, D., & Hiley, B. J. (1993). The undivided universe. London: Routledge. · Zbl 0990.81503
[11] Bohm, D., & Peat, F. D. (1987). Science, order and creativity. Toronto: Bantan Books.
[12] Boi, L.; Gillies, D. (ed.), The ‘revolution’ in the geometrical vision of space in the nineteenth century, and the hermeneutical epistemology of mathematics, 183-208 (1992), Oxford · Zbl 0967.01507
[13] Boi, L.; Boi, L. (ed.); Flament, D. (ed.); Salanskis, J-M (ed.), L’espace: Concept abstrait et/ou physique; la géométrie entre formalisation mathématique et étude de la nature, 63-90 (1992), Heidelberg
[14] Boi, L. (1994a). Die Beziehungen zwischen Raum, Kontinuum und Materie im Denken Riemanns; die Äthervorstellung und die Einheit der Physik. Das Entstehen einer neuen Naturphilosophie. Philosophia Naturalis,30(2), 171-216.
[15] Boi, L. (1994b). Mannigfaltigkeit und Gruppenbegriff. Zu den Veränderung der Geometrie in 19. Jahrhundert. Mathematische Semesterberichte,41(1), 1-16. · Zbl 0805.01010
[16] Boi, L. (1995a). Le problème mathématique de l’espace. Une quête de l’intelligible, Préface de R. Thom. Heidelberg: Springer. · Zbl 0837.00004
[17] Boi, L. (1995b). Le concept de variété et la nouvelle géométrie de l’espace dans la pensée de B. Riemann. Archives Internationales d’Histoire des Sciences,45(134), 82-128. · Zbl 0842.01007
[18] Boi, L. (1996a). Les géométries non-euclidiennes, le problème philosophique de l’espace et la conception transcendentale; Helmholtz et Kant, les néo-Kantiens, Einstein, Poincaré et Mach. Kant Studien,87(3), 257-289.
[19] Boi, L.; Greffe, J-L (ed.); Heinzmann, G. (ed.); Lorenz, K. (ed.), Géométries non-euclidiennes, théorie des groupes et conception de l’espace chez Poincaré, 315-332 (1996), Berlin/Paris
[20] Boi, L. (1997). La géométrie: Clef du réel? Pensée de l’espace et philosophie des mathématiques. Philosophiques,24(2), 389-430.
[21] Boi, L. (2000a). Géométrie de l’espace-temps et nature de la physique: Quelques réflexions historiques et épistémologiques. Manuscrito,23(1), 31-98.
[22] Boi, L. (Ed.). (2000b). Science et Philosophie de la Nature. Un nouveau dialogue. Bern: Peter Lang.
[23] Boi, L. (2004a). Theories of space – time in modern physics. Synthese,139(3), 429-489. · Zbl 1049.83526
[24] Boi, L. (2004b). Geometrical and topological foundations of theoretical physics: From gauge theories to string program. International Journal of Mathematics and Mathematical Sciences,34, 1777-1836. · Zbl 1122.58001
[25] Boi, L.; Françoise, J-P (ed.); Naber, G. (ed.); Tsun, TS (ed.), Topological knot theory and macroscopic physics, No. 5, 271-278 (2006), Oxford
[26] Boi, L.; Alimi, J-M (ed.); Füzfa, A. (ed.), From riemannian geometry to Einstein’s general relativity theory and beyond: Space – time structure, geometrization and unification, 1066-1075 (2006), Melville
[27] Boi, L.; Sica, D. (ed.), The Aleph of Space. On some extensions of geometrical and topological concepts in the twentieth-century mathematics: From surfaces and manifolds to knots and links, 79-152 (2006), Milan · Zbl 1210.00023
[28] Boi, L. (2008). Topological ideas and structures in fluid dynamics. JP Journal of Geometry and Topology, 8(2), 151-184. · Zbl 1170.35079
[29] Boi, L. (2009a). Geometria e dinamica dello spazio-tempo nelle teorie fisiche recenti. Giornale di Fisica,50, 1-10.
[30] Boi, L. (2009b). Ideas of geometrization, geometric invariants of low-dimensional manifolds, and topological quantum field theories. International Journal of Geometric Methods in Modern Physics,6(5), 701-757. · Zbl 1229.81272
[31] Boi, L. (2011). The quantum vacuum. A scientific and philosophical concept: From electrodynamics to string theory and the geometry of the microscopic world. Baltimore: The Johns Hopkins University Press. · Zbl 1266.81003
[32] Boi, L. (2018). Geometry and perception. Mathematical modelling and philosophical interpretation of opatial perception.
[33] Bourguignon, J-P; Lawson, HB; Yau, S-T (ed.), Yang-Mills theory: Its physical origins and differential geometric aspects, 395-421 (1982), Princeton · Zbl 0482.58007
[34] Burde, G., & Zieschang, H. (1985). Knots. Berlin-New York: Walter de Gruyter. · Zbl 0568.57001
[35] Cao, T. Y. (1997). Conceptual developments of 20th century field theories. Cambridge: Cambridge University Press. · Zbl 0871.01008
[36] Carbone, A., & Semmes, S. (1996). Looking from the inside and from the outside. Preprint de l’Institut des Hautes Études Scientifiques, IHES/M/96/44 (pp. 1-31). · Zbl 0969.03008
[37] Cartan, E. (1955). Oeuvres complètes (Vol. III, 1). Paris: Gauthier-Villars. · Zbl 0049.30302
[38] Cassirer, E. (1910). Substanzbegriff und Funktionbegriff. Berlin: Springer.
[39] Chandrasekhar, S. (1987). Truth and Beauty. Aesthetic and Motivations in Science (pp. 66-67). Chicago: The University Chicago Press.
[40] Châtelet, G. (1993). Les enjeux du mobile. Paris: Gallimard.
[41] Chern, S. S. (1989). Selected papers (Vol. III). New York: Springer. · Zbl 0682.01017
[42] Chern, S. S., & Simons, J. (1974). Characteristic forms and geometrical invariants. Annals of Mathematics,99, 48-69. · Zbl 0283.53036
[43] Clifford, W. K. (1879). Lectures and essays (Vol. I). London: Macmillian and Co.
[44] Connes, A. (1994). Noncommutative geometry. New York: Academic. · Zbl 1106.58004
[45] D’Arcy, T. W. (1942). On growth and form (Vol. 2). Cambridge: Cambridge University Press. · Zbl 0063.07372
[46] Desanti, J.-T. (1968). Les idéalités mathématiques. Paris: Seuil.
[47] Devine, B., & Wilczek, F. (1988). Longing for the Harmonies. Themes and variations from modern physics. New York: W.W. Norton & Company.
[48] Donaldson, SK; Joseph, A. (ed.); etal., Gauge theory and four-manifold topology, No. I, 121-151 (1994), Basel · Zbl 0855.57002
[49] Einstein, A. (1914). Die formale Grundlage der allgemeine Relativitätstheorie (pp. 831-839). Preussische Akademie der Wissenschaften zu Berlin: Sitzungsberichte. · JFM 45.1118.01
[50] Ellis, GFR; Sciama, DW; O’Raifeartaigh, L. (ed.), Global and non global problems in cosmology (1972), Oxford
[51] Flexner, A. (1939). The usefulness of useless knowledge. Harper’s Magazine, October.
[52] Fock, V. A. (1926). Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt. Zeitschrift für Physik,39, 226-232. · JFM 52.0971.01
[53] Forgacs, P., & Manton, N. S. (1980). Space – time symmetries in Gauge theories. Communications in Mathematical Physics,72, 15-46.
[54] Freed, D. S., & Uhlenbeck, K. (1991). Instantons and four-manifold. New York: Springer.
[55] Fröhlich, J. (1974). Selected paper. London: World Scientific Publishing.
[56] Gauss, C. F. (1827). Disquisitiones generales circa superfies curvas. In Werke (Göttingen 1873), Vol. IV (pp. 217-258).
[57] Goodwin, B., Kauffman, S. A., & Murray, J. D. (1993). Is morphogenesis an intrinsically robust process. Journal of Theoretical Biology,162, 135-144.
[58] Gromov, M. (1994). Carnot-Caratheodory spaces seen from within. Preprint IHES, M/94/6. · Zbl 0864.53025
[59] Holton, G. (1973). Thematic origins of scientific thought: From Kepler to Einstein. Cambridge, MA: Harvard University Press.
[60] Husserl, E. (1913). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy, first book (transl. of the 1th German ed.). The Hague: Martinus Nijhoff Publ., 1982.
[61] Hut, P.; Casti, JL (ed.); Karlqvist, A. (ed.), Structuring reality: The role of limits, 148-187 (1996), New York
[62] Isham, CJ; DeWitt, BS (ed.); Stora, R. (ed.), Topological and global aspects of quantum theory, 1059-1290 (1984), Amsterdam · Zbl 0593.53063
[63] James, M. (1989). The conceptual development of quantum mechanics. New York: American Institute of Physics.
[64] Kampis, G.; Atmanspacher, H. (ed.); Dalenoort, GJ (ed.), Biological evolution as a process viewed internally, 85-110 (1994), Berlin
[65] Kant, I. (1990). Kritik der reinen Vernunft (1781-1787). Hambourg: Felix Meiner Verlag.
[66] Kauffman, L. H. (Ed.). (1995). Knots and applications. Singapore: World Scientific. · Zbl 0838.00015
[67] Kepler, J. (1968). Harmonices mundi (first edition in Latin, 1610), Brussels.
[68] Kerszberg, P.; Hardy, L. (ed.); Embree, L. (ed.), Of exact and inexact sciences in modern physical science (1992), Dordrecht
[69] Kibble, T. W. B. (1979). Geometrization of quantum mechanics. Communications in Mathematical Physics,65, 189-201. · Zbl 0412.58006
[70] Kobayashi, S. (1957). Theory of connections. Annali di Matematica Pura ed Applicata,43, 119-194. · Zbl 0124.37604
[71] Kockelmans, J.; Gotesky, R. (ed.); Laszlo, E. (ed.), On the meaning of scientific revolutions, 231-252 (1971), London
[72] Koyré, A. (1973). Etudes d’histoire de la pensée scientifique. Paris: Gallimard.
[73] Kuhn, T. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.
[74] Lachièze-Rey, M., & Luminet, J.-P. (1995). Cosmic topology. Physics Reports,254, 135-214.
[75] Lambert, D. (1996). Recherches sur la structure et l’efficacité des interactions recentes entre mathématiques et physique. PhD thesis, Université Catholique de Louvain, Institut Supérieur de Philosophie (p. 468). Unpublished.
[76] Largeault, J. (1988). Principes classiques d’interprétation de la nature. Paris: Vrin.
[77] Lautman, A. (1977). Essai sur l’unité des mathématiques. Paris: Union générale d’Editions.
[78] Lee, H. C. (Ed.). (1990). Physics, geometry, and topology. New York: Plenum Press.
[79] Leibniz, G. W. (1992). Philosophischen Schriften, vol. I, edited by C.J. Gerhardt (1875-1890), new edition by H. Herring. Darmstadt: Wissenschaftliche Buchgesellschaft.
[80] Lobatchevsky, N. I. (1829-1830). Geometrical investigations on the theory of parallel lines. On the foundations of geometry (translation from the Russian first edition), Kazan Journal.
[81] London, F. (1927). Quantenmechanische Deutung der Theorie von Weyl. Zeitschrift für Physik,42, 375-389. · JFM 53.0870.05
[82] Mach, E. (1906). Erkenntnis und Irrtum. Skizzen zur Psychologie der Forschung: Verlag von J.A. Barth, Leipzig. · JFM 36.0077.01
[83] Manin, Yu I. (1982). Mathematics and physics. Boston: Birkhäuser.
[84] Manin, Yu I. (1988). Gauge field theory and complex geometry. Heidelberg: Springer. · Zbl 0641.53001
[85] Mardesic, S., & Segal, J. (Eds) (1987). Geometric topology and shape theory, “Lectures Notes in Mathematics”, No. 1283. Heidelberg: Springer. · Zbl 0619.00017
[86] Maxwell, J.-C. (1873). Treatise on electricity and magnetism (Vol. 2). Oxford: Clarendon Press. · JFM 05.0556.01
[87] Miller, A. I. (1984). Imagery in scientific thought. Creating 20th-century physics. Cambridge, MA: MIT Press.
[88] Milnor, J., & Stasheff, J. (1974). Characteristic classes, Annals of Math. Studies, No. 76. Princeton: Princeton University Press. · Zbl 0298.57008
[89] Misner, C. W., & Wheeler, J. A. (1957). Classical physics as geometry. Annals of Physics,2, 525-603. · Zbl 0078.19106
[90] Noether, E. (1918). “Invariante Variationsprobleme”, Nachrichten der Gesellschaft. der Wissenschaften, Göttingen: Math.-Phys. Klasse, 235-257. · JFM 46.0770.01
[91] O’Raifeartaigh, L. (1997). The dawning of Gauge theory. Princeton: Princeton University Press. · Zbl 0876.53051
[92] Pauli, W. (1994). Writings on physics and philosophy, Edited by Ch.P. Enz & K. von Meyenn. Heidelberg: Springer. · Zbl 0908.01041
[93] Penrose, R.; Witt, CM (ed.); Wheeler, JA (ed.), Structure of space – time, 121-235 (1968), New York · Zbl 0174.55901
[94] Penrose, R. (1989). The Emperor’s new mind. Oxford: Oxford University Press.
[95] Poincaré, H. (1902). La science et l’hypothèse. Paris: Flammarion. · JFM 34.0080.12
[96] Poincaré, H. (1916-1956). Oeuvres (Vols. 1-11). Paris: Gauthier-Villars.
[97] Prismas, H.; Atmanspacher, H. (ed.); Dalenoort, GJ (ed.), Endo- and exo-theories of matter, 163-193 (1994), Berlin
[98] Rashevsky, N. (1956). The geometrization of Biology. Bulletin of Mathematical Biophysics,18, 31-56.
[99] Regge, T.; Boi, L. (ed.); etal., Physics and differential geometry, 270-273 (1992), Heidelberg
[100] Riemann, B. (1854). Über die Hypothesen, welche der Geometrie zu Grunde liegen, Habilitationsschrift, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Band 13. · Zbl 0087.35001
[101] Riemann, B. (1990). Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge/Colleted Papers, new edition edited by R. Narasimhan, Berlin, Leipzig. New York: Springer. · Zbl 0703.01020
[102] Rovelli, C. (1995). Outline of a generally covariant quantum field theory and a quantum theory of gravity. Journal of Mathematical Physics,36(11), 6529-6547. · Zbl 0842.53063
[103] Rushing, T. B. (1973). Topological embeddings. London: Academic. · Zbl 0295.57003
[104] Salam, A. (1980). Gauge unification of fundamental forces. Reviews of Modern Physics,92, 525-536.
[105] Saunders, PT; Varela, F. (ed.); Stein, W. (ed.), The organism as a dynamical system (1992), Reading, MA
[106] Scheibe, E.; Agassi, J. (ed.); Cohen, RS (ed.), Invariance and covariance, 311-331 (1982), Dordrecht
[107] Schrödinger, E. (1956). The expanding universe. Cambridge: Cambridge University Press. · JFM 65.1523.04
[108] Schwarz, H. (1982). Superstring theory. Physics Reports,89, 223-322. · Zbl 0578.22027
[109] Schwarz, A. S. (1993). Quantum field theory and topology. Berlin: Springer. · Zbl 0789.58004
[110] Shubnikov, A. V., & Koptsik, V. A. (1974). Symmetry in science and art. New York: Plenum Press.
[111] Singer, I. M. (1987). Some problems in the quantization of Gauge theories and string theories. In Proceedings Hermann Weyl (Vol. 48, pp. 199-218). Providence: Amer. Math. Soc. · Zbl 0702.58010
[112] Smale, S. (1963). A survey of some recent developments in differential geometry. Bulletin of the American Mathematical Society,69, 131-145. · Zbl 0133.16507
[113] Souriau, J-M; Diner, S. (ed.); Fargue, D. (ed.); Lochak, G. (ed.), Physique et Géométrie, 343-364 (1992), Paris
[114] Stamatescu, I-O; Rudolph, E. (ed.); Stamatescu, I-O (ed.), On renormalization in quantum field theory and the structure of space – time, 67-91 (1994), Heidelberg · Zbl 0932.81005
[115] Stenrod, N. (1951). The topology of fibre bundles. Princeton: Princeton University Press. · Zbl 0054.07103
[116] Taubes, C. H. (1982). Self-dual Yang-Mills connections on non-self dual 4-manifolds. Journal of Differential Geometry,17, 139-170. · Zbl 0484.53026
[117] Thom, R. (1969). Topological models in biology. Topology,8, 313-335. · Zbl 0165.23301
[118] Thom, R. (1983). Paraboles et Catastrophes, Entretiens sur les mathématiques, la science et la philosophie réalisés par G. Giorello et S. Morini. Paris: Flammarion. · Zbl 0997.00531
[119] Thom, R. (1990). Apologie du logos. Paris: Hachette.
[120] Thuan, T. X. (1998). Le chaos et l’harmonie. La fabrication du réel. Paris: Fayard.
[121] Torretti, R. (1983). Relativity and geometry. Oxford: Pergamon Press. · Zbl 0515.53001
[122] Torretti, R.; Marcus, RB (ed.); Dorn, GJW (ed.); Weingarten, P. (ed.), Conceptual reform in scientific revolutions, 413-431 (1986), Amsterdam
[123] Trautman, A.; Held, A. (ed.), Fiber bundles, gauge fields, and gravitation, No. 1, 287-307 (1980), New York
[124] Nieuwenhuizen, P.; DeWitt, BS (ed.); Stora, R. (ed.), An Introduction to Simple Supergravity and the Kaluza-Klein program, 823-932 (1984), Amsterdam · Zbl 0594.53055
[125] Vizgin, V. P. (1994). Unified field theories in the first third of the 20th century. Basel: Birkhäuser. · Zbl 1221.83002
[126] Weil, A. (1979). De la métaphysique aux mathématiques. In Collected papers (Vol. II). New York: Springer (first published in Sciences, 1960, 52-56).
[127] Weinberg, S. (1980). Conceptual foundations of the unified theory of weak and electromagnetic interactions. Reviews of Modern Physics,52(3), 515-523.
[128] Weyl, H. (1918). Gravitation und Elektrizität. Sitzungberichte der Königlichen Preussische Akademie der Wissenschaft, Berlin,26, 465-480. · JFM 46.1300.01
[129] Weyl, H. (1929). Elektron und gravitation. Zeitschrift für Physik,56, 330-352. · JFM 55.0513.04
[130] Weyl, H. (1931). The theory of groups and quantum mechanics. London: Methuen and Co. · JFM 58.1374.01
[131] Weyl, H. (1949). Philosophy of mathematics and natural sciences. Princeton: Princeton University Press. · Zbl 0033.24209
[132] Wheeler, J. A. (1962). Geometrodynamics. London: Academic. · Zbl 0124.22207
[133] Wigner, E. P. (1960). “The unreasonable effectiveness of mathematics in the natural sciences”, Comm. P. Appl. Math., 13 (1). Re-edited in Symmetries and Reflections. Scientific Essays of Eugene P. Wigner, Indiana University Press, Bloomington, 1967. · Zbl 0102.00703
[134] Witten, E. (1982). Supersymmetry and Morse theory. Journal of Differential Geometry,17, 661-692. · Zbl 0499.53056
[135] Witten, E. (1987). Physics and geometry. In Proceedings of the international congress of mathematics (Berkeley 1986) (pp. 267-303). American Mathematical Society. · Zbl 0666.53052
[136] Witten, E. (1988). Topological quantum field theory. Communications in Mathematical Physics,117, 353-386. · Zbl 0656.53078
[137] Yang, CN; Chandrasekharan, K. (ed.), Hermann Weyl’s contribution to physics, 7-21 (1989), Heidelberg
[138] Yang, C. N., & Mills, R. L. (1954). Conservation of isotopic-spin and isotopic gauge invariance. Physical Review,96(1), 191-195. · Zbl 1378.81075
[139] Yu, T. T., & Yang, C. N. (1975). Concept of non integrable phase factors and global formulation of gauge fields. Physical Review D,12, 3845-3857.
[140] Zee, A. (Ed.). (1982). Unity of forces in the universe (Vol. I). Singapore: World Scientific.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.