×

Secure chaotic communication based on extreme multistability. (English) Zbl 1457.94008

Summary: Extreme multistability is the coexistence of a large number of attractors which can be reached by varying initial conditions. In this paper we show how this fascinating phenomenon can be used for secure communication. The main advantage of the communication system based on extreme multistability over a conventional chaos-based communication system is its exceptionally high security. The proposed system consists of two identical six-order oscillators; one in the transmitter and another one in the receiver, each exhibiting the coexistence of a large number of chaotic attractors. The oscillators are synchronized using a private channel through one of the system variables, while the information is transmitted via a public channel through another variable. The information is encrypted by varying the initial condition of one of the state variables in the transmitter using a chaotic map, adhering message packages in a staggered form to the coexisting attractors within the same time series of another state variable, which leads to switching among the coexisting chaotic attractors. To ensure communication security, the duration of the packages is shorter than synchronization time, so that synchronization attacks are ineffective.

MSC:

94A05 Communication theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N99 Applications of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pisarchik, A. N.; Feudel, U., Control of multistability, Phys. Rep., 540, 167-218 (2014) · Zbl 1357.34105
[2] Seydel, R., From Equilibrium to Chaos: Practical Bifurcation and Stability (1988), Elsevier: Elsevier New York · Zbl 0652.34059
[3] S1063-651X(96)05311-1
[4] Sun, H.; Scott, S.; Showalter, K., Uncertain destination dynamics, Phys. Rev. E, 60, 3876-3880 (1999)
[5] Ngonghala, C. N.; Feudel, U.; Showalter, K., Extreme multistability in a chemical model system, Phys. Rev. E, 83, 056206 (2011)
[6] Schneier, B., Applied Cryptography - Protocols, Algorithms, and Source Codes (1996), C. John Wiley & Sons, Inc.: C. John Wiley & Sons, Inc. New York · Zbl 0853.94001
[7] Daemen, J.; Sand, B.; Rijmen, V., The Design of Rijndael: AES - The Advanced Encryption Standard (2002), Springer-Verlag: Springer-Verlag Berlin · Zbl 1065.94005
[8] Matthews, R., On the derivation of a chaotic encryption algorithm, Cryptologia, 13, 1, 29-42 (1989)
[9] Kocarev, L.; Halle, K. S.; Eckert, K.; Chua, L. O.; Parlitz, U., Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bifurc. Chaos, 2, 3, 709-713 (1992) · Zbl 0875.94134
[10] Hayes, S.; Grebogi, C.; Ott, E., Communicating with chaos, Phys. Rev. Lett., 70, 3031-3034 (1993)
[11] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019
[12] Boccaletti, S.; Pisarchik, A. N.; del Genio, C. I.; Amann, A., Synchronization: From Coupled Systems to Complex Networks (2018), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1380.90001
[13] Pisarchik, A. N.; Zanin, M., Chaotic map cryptography and security, (Clary, T. S., Horizons in Computer Science, 4 (2012), NOVA), 301-332
[14] R. Tenny, L.S. Tsimring, H.D.I. Abarbanel, L.E. Larson, Security of Chaos-based Communication and Encryption, Springer, New York, pp. 191-229. 10.1007/0-387-29788-X_7
[15] Zanin, M.; R. Sevilla-Escoboza, R.; Jaimes-Reátegui, R.; García-Lopez, J. H.; Pisarchik, A. N., Synchronization attack of chaotic communication systems, Discont., Nonlinear. Complex. (ISO4), 2, 4, 333-343 (2013)
[16] Kocarev, L., Chaos-based cryptography: a brief overview, IEEE Trans. Circuits-I, 1, 6-21 (2002)
[17] 299a-299f
[18] 1057-7130/9
[19] 0031-9007/93/71(1)/65(4)
[20] García-López, J. H.; Jaimes-Reategui, R.; Chiu-Zarate, R.; Lopez-Mancilla, D.; Jimenez, R.; Pisarchik, A. N., Secure computer communication based on chaotic Rössler oscillators, Open Electr. Electron. Eng. J., 2, 41-44 (2008)
[21] Burkin, I. M.; Kuznetsova, O. I., On some methods for generating extremely multistable systems, J. Phys. Conf. Ser., 1368, 042050 (2019)
[22] Chakraborty, R.; Poria, S., Extreme multistable synchronisation in coupled dynamical systems, Pramana - J. Phys., 93, 19 (2019)
[23] Pisarchik, A. N.; Jiménez-Rodríguez, M.; Jaimes-Reategui, R., How to resist synchronization attacks, Discontin., Nonlinearity Complex., 4, 1, 1-9 (2015)
[24] Luo, A. C.J., Regularity and Complexity in Dynamical Systems (2012), Springer: Springer New York · Zbl 1253.37003
[25] Hens, C. R.; Banerjee, R.; Feudel, U.; Dana, S. K., How to obtain extreme multistability in coupled dynamical systems, Phys. Rev. E, 85, 3, 035202 (2012)
[26] García-López, J. H.; Jaimes-Reátegui, R.; Pisarchik, A. N.; Medina-Gutiérrez, C.; Jiménez-Godinez, J. C.; Murguía-Hernandez, A. U.; Valdivia, R., Novel communication scheme based on chaotic Rössler circuits, J. Phys. Conf. Ser., 23, 176-184 (2005)
[27] 10.106/j.jfranklin.2012.10.005 · Zbl 1255.93023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.