×

Weakly nonlinear dynamics of taut strings traveled by a single moving force. (English) Zbl 1380.74063

Summary: The dynamical response of a taut string traveled by a single moving force is here studied in the nonlinear regime. The equations of motion of the system, accounting for geometric nonlinearities and external damping, are discussed and then studied through perturbation and numerical methods. In particular, the Multiple Scale Method and the Straightforward Expansion are successfully applied to obtain semi-analytical results, and direct numerical integrations are performed on the equations of motion discretized via a Galerkin approach; a solution through the finite-difference method is also developed. Particular attention is devoted to the dynamic increment of tension, which is the main nonlinear effect induced by the traveling force. Using values of model parameters deducted from the literature, the agreement of semi-analytical results with numerical ones is discussed, showing the good behavior of the Straightforward Expansion and pointing out the importance of the geometric nonlinearity for certain combinations of the parameters involved.

MSC:

74K05 Strings
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rusin J, Sniady P, Sniady P (2011) Vibration of double-string complex system under moving forces. Closed solutions. J Sound Vib 330:404-415 · doi:10.1016/j.jsv.2010.08.021
[2] Piccardo G, Tubino F (2012) Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads. Struct Eng Mech 44(5):681-704 · doi:10.12989/sem.2012.44.5.681
[3] Bajer C, Dyniewicz B (2012) Numerical analysis of vibrations of structures under moving inertial loads. Springer-Verlag, Berlin. iSBN: 978-3-642-29547-8 · Zbl 1254.74001
[4] Bersani A, Della Corte A, Piccardo G, Rizzi N (2016) An explicit solution for the dynamics of a taut string of finite length carrying a traveling mass: the subsonic case. Z Angew Math Phys 67(108):1-17 · Zbl 1359.74037
[5] Yang B, Tan C, Bergman L (1998) On the problem of a distributed parameter system carrying a moving oscillator. In: Tzou H, Bergman L (eds) Dynamics and control of distributed systems. Cambridge University Press, New York, pp. 69-94. iSBN:0-521-55074-2
[6] Caprani C, Ahmadi E (2016) Formulation of human-structure interaction system models for vertical vibration. J Sound Vib 377:346-367 · doi:10.1016/j.jsv.2016.05.015
[7] Cazzani A, Wagner N, Ruge P, Stochino F (2016) Continuous transition between traveling mass and traveling oscillator using mixed variables. Int J Non-Linear Mech 80:82-95 · doi:10.1016/j.ijnonlinmec.2015.06.017
[8] Ferretti M, Piccardo G (2013) Dynamic modeling of taut strings carrying a traveling mass. Contin Mech Thermodyn 25(2-4):469-488 · Zbl 1343.74024 · doi:10.1007/s00161-012-0278-1
[9] Fryba L (1999) Vibrations of Solids and Structures under Moving Loads. Thomas Telford, London. iSBN: 978-0-7277-3539-3 · Zbl 0301.73015
[10] Ouyang H (2011) Moving-load dynamic problems: a tutorial (with a brief overview). Mech Syst Signal Process 25:2039-2060 · doi:10.1016/j.ymssp.2010.12.010
[11] Chang T-P, Liu Y-N (1996) Dynamic finite element analysis of a nonlinear beam subjected to a moving load. Int J Solids Struct 33(12):1673-1688 · Zbl 0928.74089 · doi:10.1016/0020-7683(95)00128-X
[12] Mamandi A, Kargarnovin M, Younesian D (2010) Nonlinear dynamics of an inclined beam subjected to a moving load. Nonlinear Dyn 60:277-293 · Zbl 1189.74048 · doi:10.1007/s11071-009-9595-8
[13] Wu J, Chen C (1989) The dynamic analysis of a suspended cable due to a moving load. Int J Numer Methods Eng 28:2361-2381 · Zbl 0716.73053 · doi:10.1002/nme.1620281011
[14] Wang L, Rega G (2010) Modelling and transient planar dynamics of suspended cables with moving mass. Int J Solids Struct 47:2733-2744 · Zbl 1196.74078 · doi:10.1016/j.ijsolstr.2010.06.002
[15] Pesterev A, Bergman L (2000) An improved series expansion of the solution to the moving oscillator problem. J Vib Acoust ASME 122:54-61 · doi:10.1115/1.568436
[16] Gavrilov S (2002) Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mech 154:47-60 · Zbl 1156.74331 · doi:10.1007/BF01170698
[17] Gavrilov S, Eremeyev V, Piccardo G, Luongo A (2016) A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dyn 86(4):2245-2260 · Zbl 1371.74160 · doi:10.1007/s11071-016-3080-y
[18] Metrikine A (2004) Steady state response of an infinite string on a non-linear visco-elastic foundation to moving point loads. J Sound Vib 272:1033-1046 · doi:10.1016/j.jsv.2003.04.001
[19] Liu I-S, Rincon M (2003) Effect of moving boundaries on the vibrating elastic string. Appl Numer Math 47:159-172 · Zbl 1071.74024 · doi:10.1016/S0168-9274(03)00063-1
[20] Kang Y, Lee M, Jung I (2009) Stabilization of the Kirchhoff type wave equation with locally distributed damping. Appl Math Lett 22:719-722 · Zbl 1171.35079 · doi:10.1016/j.aml.2008.08.009
[21] Nayfeh A, Mook D (1979) Nonlinear oscillations. Wiley, New York · Zbl 0418.70001
[22] Luongo A, Zulli D (2013) Mathematical models of beams and cables. ISTE Wiley, London, U.K. · doi:10.1002/9781118577554
[23] Wickert J (1992) Non-linear vibration of a traveling tensioned beam. Int J Non-Linear Mech 27(3):503-517 · Zbl 0779.73025 · doi:10.1016/0020-7462(92)90016-Z
[24] Luongo A, Piccardo G (1998) Non-linear galloping of sagged cables in 1:2 internal resonance. J Sound Vib 214(5):915-940 · doi:10.1006/jsvi.1998.1583
[25] Nayfeh A (1993) Introduction to perturbation techniques. Wiley, New York · Zbl 0449.34001
[26] Luongo A, Piccardo G (2016) Dynamics of taut strings traveled by train of forces. Contin Mech Thermodyn 28(1-2):603-616 · Zbl 1348.74184 · doi:10.1007/s00161-015-0473-y
[27] Chen L-Q, Ding H (2008) Two nonlinear models of a transversely vibrating string. Arch Appl Mech 78:321-328 · Zbl 1161.74389 · doi:10.1007/s00419-007-0164-7
[28] Eftekhari S (2015) A differential quadrature procedure with regularization of the Dirac-delta function for numerical solution of moving load problem. Lat Am J Solids Struct 12(7):1241-1265 · doi:10.1590/1679-78251417
[29] Eftekhari S (2016) A differential quadrature procedure for linear and nonlinear steady state vibrations of infinite beams traversed by a moving point load. Meccanica 51(10):2417-2434 · Zbl 1348.74144 · doi:10.1007/s11012-016-0373-7
[30] Greco L, Cuomo M (2015) Consistent tangent operator for an exact Kirchhoff rod model. Contin Mech Thermodyn 25(4-5):861-877 · Zbl 1341.74096 · doi:10.1007/s00161-014-0361-x
[31] Cazzani A, Cattani M, Mauro R, Stochino F (2017) A simplified model for railway catenary wire dynamics. Eur J Environ Civil Eng 21(7-8):936-959 · doi:10.1080/19648189.2016.1245631
[32] Pagnini L, Repetto M (2012) The role of parameter uncertainties in the damage prediction of the alogwind-induced fatigue. J Wind Eng Ind Aerodyn 104-106:227-238 · doi:10.1016/j.jweia.2012.03.027
[33] Roveri N, Carcaterra A (2012) Damage detection in structures under traveling loads by Hilbert-Huang transform. Mech Syst Signal Process 28:128-144 · doi:10.1016/j.ymssp.2011.06.018
[34] Porfiri M, dell’Isola F, Mascioli F Frattale (2004) Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int J Circuit Theory Appl 32(4):167-198 · Zbl 1050.94550 · doi:10.1002/cta.273
[35] Giorgio I, Galantucci L, Della Corte A, Del Vescovo D (2015) Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int J Appl Electromagn Mech 47(4):1051-1084 · doi:10.3233/JAE-140148
[36] D’Annibale F, Rosi G, Luongo A (2016) Piezoelectric control of Hopf bifurcations: a non-linear discrete case study. Int J Non-Linear Mech 80:160-169 · doi:10.1016/j.ijnonlinmec.2015.09.012
[37] Pagnini L, Piccardo G (2016) The three-hinged arch as an example of piezomechanic passive controlled structure. Contin Mech Thermodyn 28(5):1247-1262 · Zbl 1355.74058 · doi:10.1007/s00161-015-0474-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.