×

Transverse and longitudinal angular momenta of light. (English) Zbl 1358.78008

Summary: We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin-direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

MSC:

78A25 Electromagnetic theory (general)
81V80 Quantum optics
81V70 Many-body theory; quantum Hall effect
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Poynting, J. H., The wave-motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly-polarized light, Proc. R. Soc. Lond. Ser. A, 82, 560-567 (1909) · JFM 40.0875.01
[2] Beth, R. A., Mechanical detection and measurement of the angular momentum of light, Phys. Rev., 50, 115-125 (1936)
[3] Allen, L.; Beijersbergen, M. W.; Spreeuw, R. J.C.; Woerdman, J. P., Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A, 45, 8185-8189 (1992)
[4] He, H.; Friese, M. E.J.; Heckenberg, N. R.; Rubinsztein-Dunlop, H., Direct observation of transfer of angular-momentum to absorptive particles from a laser beam with a phase singularity, Phys. Rev. Lett., 75, 826-829 (1995)
[5] (Allen, L.; Barnett, S. M.; Padgett, M. J., Optical Angular Momentum (2003), IoP Publishing: IoP Publishing Bristol)
[6] Bekshaev, A.; Soskin, M.; Vasnetsov, M., Paraxial Light Beams with Angular Momentum (2008), Nova Science Publishers: Nova Science Publishers New York
[7] (Andrews, D. L., Structured Light and its Applications (2008), Academic Press: Academic Press Amsterdam)
[8] (Torres, J. P.; Torner, L., Twisted Photons (2011), Wiley-VCH: Wiley-VCH Weinheim)
[9] (Andrews, D. L.; Babiker, M., The Angular Momentum of Light (2013), Cambridge University Press: Cambridge University Press Cambridge)
[10] Allen, L.; Padgett, M. J.; Babiker, M., The orbital angular momentum of light, Prog. Opt., 39, 291-372 (1999)
[11] Molina-Terriza, G.; Torres, J. P.; Torner, L., Twisted photons, Nat. Phys., 3, 305-310 (2007)
[12] Franke-Arnold, S.; Allen, L.; Padgett, M. J., Advances in optical angular momentum, Laser & Photon. Rev, 2, 299-313 (2008)
[13] Yao, A. M.; Padgett, M. J., Optical angular momentum: origins, behavior, and applications, Adv. Opt. Photon., 3, 161-204 (2011)
[14] Bekshaev, A.; Bliokh, K. Y.; Soskin, M., Internal flows and energy circulation in light beams, J. Opt., 13, 053001 (2011)
[15] Friese, M. E.J.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H., Optical alignment and spinning of laser-trapped microscopic particles, Nature, 394, 348-350 (1995)
[16] O’Neil, A. T.; MacVicar, I.; Allen, L.; Padgett, M. J., Intrinsic and extrinsic nature of the orbital angular momentum of a light beam, Phys. Rev. Lett., 16, 053601 (2002)
[17] Garcés-Chavéz, V.; McGloin, D.; Padgett, M. J.; Dultz, W.; Schmitzer, H.; Dholakia, K., Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle, Phys. Rev. Lett., 91, 093602 (2003)
[18] Curtis, J. E.; Grier, D. G., Structure of optical vortices, Phys. Rev. Lett., 90, 133901 (2003)
[19] Adachi, H.; Akahoshi, S.; Miyakawa, K., Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light, Phys. Rev. A, 75, 063409 (2007)
[20] Zhao, Y.; Edgar, J. S.; Jeffries, G. D.M.; McGloin, D.; Chiu, D. T., Spin-to-orbital angular momentum conversion in a strongly focused optical beam, Phys. Rev. Lett., 99, 073901 (2007)
[21] Berry, M. V., Paraxial beams of spinning light, Proc. SPIE, 3487, 6-11 (1998)
[22] Akhiezer, A. I.; Berestetskii, V. B., Quantum Electrodynamics (1965), Interscience Publishers: Interscience Publishers New York · Zbl 0084.45004
[23] Soper, D. E., Classical Field Theory (1976), Wiley: Wiley New York
[24] Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G., Photons and Atoms (1997), Wiley-Interscience: Wiley-Interscience New York
[25] Belinfante, F. J., On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields, Physica, 7, 449-474 (1940) · Zbl 0024.14203
[26] Humblet, J., Sur le moment d’impulsion d’une onde électromagnétique, Physica, 10, 585-603 (1943) · Zbl 0028.28002
[27] Barnett, S. M.; Allen, L., Orbital angular-momentum and nonparaxial light-beams, Opt. Commun., 110, 670-678 (1994)
[28] van Enk, S. J.; Nienhuis, G., Spin and orbital angular-momentum of photons, Europhys. Lett., 25, 497-501 (1994)
[29] van Enk, S. J.; Nienhuis, G., Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields, J. Modern Opt., 41, 963-977 (1994)
[30] Berry, M. V., Optical currents, J. Opt. A: Pure Appl. Opt., 11, 094001 (2009)
[31] Bliokh, K. Y.; Alonso, M. A.; Ostrovskaya, E. A.; Aiello, A., Angular momenta and spin-orbit interaction of nonparaxial light in free space, Phys. Rev A, 82, 063825 (2010)
[32] Barnett, S. M., Rotation of electromagnetic fields and the nature of optical angular momentum, J. Modern Opt., 57, 1339-1343 (2010) · Zbl 1203.78032
[33] Bialynicki-Birula, I.; Bialynicki-Birula, Z., Canonical separation of angular momentum of light into its orbital and spin parts, J. Opt., 13, 064014 (2011)
[34] Bliokh, K. Y.; Bekshaev, A. Y.; Nori, F., Dual electromagnetism: helicity, spin, momentum, and angular momentum, New J. Phys., 15, 033026 (2013) · Zbl 1451.78003
[35] Ornigotti, M.; Aiello, A., Surface angular momentum of light beams, Opt. Express, 22, 6586-6596 (2014)
[36] Fernandez-Corbaton, I.; Zambrana-Puyalto, X.; Molina-Terriza, G., On the transformations generated by the electromagnetic spin and orbital angular momentum operators, J. Opt. Soc. Amer. B, 31, 2136-2141 (2014)
[37] Bliokh, K. Y.; Dressel, J.; Nori, F., Conservation of the spin and orbital angular momenta in electromagnetism, New J. Phys., 16, 093037 (2014)
[38] Leader, E.; Lorcé, C., The angular momentum controversy: What’s it all about and does it matter?, Phys. Rep., 541, 163-248 (2014)
[39] Nye, J. F.; Berry, M. V., Dislocations in wave trains, Proc. R. Soc. Lond. Ser. A, 336, 165-190 (1974) · Zbl 0289.76046
[40] Bazhenov, V. Y.; Vasnetsov, M. V.; Soskin, M. S., Laser beams with screw dislocations in their wavefronts, JETP Lett., 52, 429-431 (1990)
[41] Soskin, M. S.; Vasnetsov, M. V., Singular optics, Prog. Opt., 42, 219-276 (2001)
[42] Desyatnikov, A. S.; Kivshar, Y. S.; Torner, L., Optical vortices and vortex solitons, Prog. Opt., 47, 291-391 (2005)
[43] Dennis, M. R.; O’Holleran, K.; Padgett, M. J., Singular optics: optical vortices and polarization singularities, Prog. Opt., 53, 293-363 (2009)
[44] Aiello, A.; Lindlein, N.; Marquardt, C.; Leuchs, G., Transverse angular momentum and geometric spin Hall effect of light, Phys. Rev Lett., 103, 100401 (2009)
[45] Aiello, A.; Marquardt, C.; Leuchs, G., Transverse angular momentum of photons, Phys. Rev A, 81, 053838 (2010)
[46] Bliokh, K. Y.; Nori, F., Transverse spin of a surface polariton, Phys. Rev. A, 85, 061801(R) (2012)
[47] Bliokh, K. Y.; Nori, F., Spatiotemporal vortex beams and angular momentum, Phys. Rev. A, 86, 033824 (2012)
[48] Kim, K.-Y.; Lee, I.-M.; Kim, J.; Jung, J.; Lee, B., Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes, Phys. Rev. A, 86, 063805 (2012)
[49] Banzer, P.; Neugebauer, M.; Aiello, A.; Marquardt, C.; Lindlein, N.; Bauer, T.; Leuchs, G., The photonic wheel-demonstration of a state of light with purely transverse angular momentum, J. Europ. Opt. Soc. Rap. Public., 8, 13032 (2013)
[50] Bliokh, K. Y.; Bekshaev, A. Y.; Nori, F., Extraordinary momentum and spin in evanescent waves, Nature Commun., 5, 3300 (2014)
[51] Canaguier-Durand, A.; Genet, C., Transverse spinning of a sphere in plasmonic field, Phys. Rev. A, 89, 033841 (2014)
[52] Mitsch, R.; Sayrin, C.; Albrecht, B.; Schneeweiss, P.; Rauschenbeutel, A., Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide, Nature Commun., 5, 5713 (2014)
[53] O’Connor, D.; Ginzburg, P.; Rodríguez-Fortuño, F. J.F. J.; Wurtz, G. A.; Zayats, A. V., Spin-orbit coupling in surface plasmon scattering by nanostructures, Nature Commun., 5, 5327 (2014)
[54] Bekshaev, A. Y.; Bliokh, K. Y.; Nori, F., Transverse spin and momentum in two-wave interference, Phys. Rev. X, 5, 011039 (2015)
[55] Neugebauer, M.; Bauer, T.; Aiello, A.; Banzer, P., Measuring the transverse spin density of light, Phys. Rev. Lett., 114, 063901 (2015)
[56] Bliokh, K. Y.; Smirnova, D.; Nori, F., Quantum spin Hall effect of light, Science, 348, 1448-1451 (2015) · Zbl 1355.78016
[57] Sayrin, C.; Junge, C.; Mitsch, R.; Albrecht, B.; O’Shea, D.; Schneeweiss, P.; Volz, J.; Rauschenbeutel, A., Optical diode based on the chirality of guided photons
[58] Aiello, A.; Banzer, P., Transverse spin of light for all wavefields
[59] Kim, K.-Y.; Wang, A. X., Spin angular momentum of surface modes from the perspective of optical power flow, Opt. Lett., 40, 2929-2932 (2015)
[60] Landau, L. D.; Lifshitz, E. M., Mechanics (1976), Butterworth-Heinmann: Butterworth-Heinmann Oxford · Zbl 0081.22207
[61] Player, M. A., Angular momentum balance and transverse shift on reflection of light, J. Phys. A: Math. Gen., 20, 3667-3678 (1987)
[62] Fedoseyev, V. G., Conservation laws and transverse motion of energy on reflection and transmission of electromagnetic waves, J. Phys. A: Math. Gen., 21, 2045-2059 (1988)
[63] Onoda, M.; Murakami, S.; Nagaosa, N., Hall effect of light, Phys. Rev. Lett., 93, 083901 (2004)
[64] Bliokh, K. Y.; Bliokh, Y. P., Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet, Phys. Rev. Lett., 96, 073903 (2006)
[65] Bliokh, K. Y., Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect, Phys. Rev. Lett., 97, 043901 (2006)
[66] Hosten, O.; Kwiat, P., Observation of the spin Hall effect of light via weak measurements, Science, 319, 787-790 (2008)
[67] Bliokh, K. Y.; Niv, A.; Kleiner, V.; Hasman, E., Geometrodynamics of spinning light, Nature Photon., 2, 748-753 (2008)
[68] Aiello, A.; Woerdman, J. P., Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts, Opt. Lett., 33, 1437-1439 (2008)
[69] Fedoseyev, V. G., Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface, J. Phys. A: Math. Theor., 41, 505202 (2008) · Zbl 1153.78004
[70] Bliokh, K. Y.; Shadrivov, I. V.; Kivshar, Y. S., Goos-Hanchen and Imbert-Fedorov shifts of polarized vortex beams, Opt. Lett., 34, 389-391 (2009)
[71] Merano, M.; Hermosa, N.; Woerdman, J. P.; Aiello, A., How orbital angular momentum affects beam shifts in optical reflection, Phys. Rev. A, 82, 023817 (2010)
[72] Gorodetski, Y.; Bliokh, K. Y.; Stein, B.; Genet, C.; Shitrit, N.; Kleiner, V.; Hasman, E.; Ebbesen, T. W., Weak measurements of light chirality with a plasmonics slit, Phys. Rev. Lett., 109, 013901 (2012)
[73] Bliokh, K. Y.; Aiello, A., Goos-Hanchen and Imbert-Fedorov beam shifts: an overview, J. Opt., 15, 014001 (2013)
[74] Lee, S. Y.; Lee, I.-M.; Park, J.; Oh, S.; Lee, W.; Kim, K.-Y.; Lee, B., Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons, Phys. Rev. Lett., 108, 213907 (2012)
[75] Rodríguez-Fortuño, F. J.; Marino, G.; Ginzburg, P.; O’Connor, D.; Martinez, A.; Wurtz, G. A.; Zayats, A. V., Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science, 340, 328-330 (2013)
[76] Miroshnichenko, A. E.; Kivshar, Y. S., Polarization traffic control for surface plasmons, Science, 340, 283-284 (2013)
[77] Petersen, J.; Volz, J.; Rauschenbeutel, A., Chiral nanophotonic waveguide interface based on spin-orbit interaction of light, Science, 346, 67-71 (2014)
[78] le Feber, B.; Rotenberg, N.; Kuipers, L., Nanophotonic control of circular dipole emission: towards a scalable solid-state to flying-qubits interface, Nature Commun., 6, 6695 (2015)
[79] Marrucci, L., Spin gives direction, Nature Photon., 11, 9-10 (2015)
[81] Young, A. B.; Thijssen, A.; Beggs, D. M.; Kuipers, L.; Rarity, J. G.; Oulton, R., Polarization engineering in photonic crystal waveguides for spin-photon entanglers
[82] Lefier, Y.; Grosjean, T., Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides, Opt. Lett., 40, 2890-2893 (2015)
[83] Pichler, H.; Ramos, T.; Daley, A. J.; Zoller, P., Quantum optics of chiral spin networks, Phys. Rev. A, 91, 042116 (2015)
[84] Izmest’ev, A. A., Classical theory of wave beams, Sov. Phys. J., 14, 77-80 (1971), Translated from A.A. Izmestev, Izvestiya Vysshikh. Uchebnykh Zavedenii Fizika 1, 101-105 (1971)
[85] Barron, L. D., Molecular Light Scattering and Optical Activity (2004), Cambridge University Press: Cambridge University Press Cambridge
[86] Tang, Y.; Cohen, A. E., Optical chirality and its interaction with matter, Phys. Rev. Lett., 104, 163901 (2010)
[87] Bliokh, K. Y.; Nori, F., Characterizing optical chirality, Phys. Rev. A, 83, 021803(R) (2011)
[88] Cameron, R. P.; Barnett, S. M.; Yao, A. M., Optical helicity, optical spin, and related quantities in electromagnetic theory, New J. Phys., 14, 053050 (2012) · Zbl 1448.78002
[89] Bliokh, K. Y.; Kivshar, Y. S.; Nori, F., Magnetoelectric effects in local light-matter interactions, Phys. Rev. Lett., 113, 033601 (2014)
[90] Jackson, J. D., Classical Electrodynamics (1999), Wiley · Zbl 0114.42903
[91] Born, M.; Wolf, E., Principles of Optics (2005), Pergamon: Pergamon London
[92] Bliokh, K. Y.; Bekshaev, A. Y.; Kofman, A. G.; Nori, F., Photon trajectories, anomalous velocities, and weak measurements: a classical interpretation, New J. Phys., 15, 073022 (2013) · Zbl 1451.81021
[93] Afanasiev, G. N.; Stepanovsky, Y. P., The helicity of the free electromagnetic field and its physical meaning, Nuovo Cimento A, 109, 271-279 (1996)
[94] Trueba, J. L.; Rañada, A. F., The electromagnetic helicity, Eur. J. Phys., 17, 141-144 (1996)
[95] Barnett, S. M.; Cameron, R. P.; Yao, A. M., Duplex symmetry and its relation to the conservation of optical helicity, Phys. Rev. A, 86, 013845 (2012)
[96] Andrews, D. L.; Coles, M. M., Measures of chirality and angular momentum in the electromagnetic field, Opt. Lett., 37, 3009-3011 (2012)
[97] Fernandez-Corbaton, I.; Zambrana-Puyalto, X.; Molina-Terriza, G., Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions, Phys. Rev. A, 86, 042103 (2012)
[98] Hendry, E.; Mikhaylovskiy, R. V.; Barron, L. D.; Kadodwala, M.; Davis, T. J., Chiral electromagnetic fields generated by arrays of nanoslits, Nano Lett., 12, 3640-3644 (2012)
[99] Schäferling, M.; Dregely, D.; Hentschel, M.; Giessen, H., Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures, Phys. Rev. X, 2, 031010 (2012)
[100] Rosales-Guzmán, C.; Volke-Sepulveda, K.; Torres, J. P., Opt. Lett., 37, 3486-3488 (2012)
[101] Choi, J. S.; Cho, M., Limitations of a superchiral field, Phys. Rev. A, 86, 063834 (2012)
[102] Fernandez-Corbaton, I.; Zambrana-Puyalto, X.; Tischler, N.; Vidal, X.; Juan, M. L.; Molina-Terriza, G., Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell’s equations, Phys. Rev. Lett., 111, 060401 (2013)
[103] Canaguier-Durand, A.; Hutchison, J. A.; Genet, C.; Ebbesen, T. W., Mechanical separation of chiral dipoles by chiral light, New J. Phys., 15, 123037 (2013)
[104] van Enk, S. J., The covariant description of electric and magnetic field lines of null fields: application to Hopf-Rañada solutions, J. Phys. A: Math. Theor., 46, 175204 (2013) · Zbl 1273.78007
[105] Dressel, J.; Bliokh, K. Y.; Nori, F., Spacetime algebra as a powerful tool for electromagnetism, Phys. Rep., 589, 1-71 (2015) · Zbl 1357.15016
[106] Calkin, M. G., An invariance property of the free electromagnetic field, Amer. J. Phys., 33, 958-960 (1965)
[107] Zwanziger, D., Quantum field theory of particles with both electric and magnetic charges, Phys. Rev., 176, 1489-1495 (1968)
[108] Deser, S.; Teitelboim, C., Duality transformations of Abelian and non-Abelian gauge fields, Phys. Rev., 13, 1592-1597 (1976)
[109] Gaillard, M. K.; Zumino, B., Duality rotations for interacting fields, Nuclear Phys. B, 193, 221-244 (1981)
[110] Barnett, S. M., On the six components of optical angular momentum, J. Opt., 13, 064010 (2011)
[111] Cameron, R. P.; Barnett, S. M., Electric-magnetic symmetry and Noether’s theorem, New J. Phys., 14, 123019 (2012) · Zbl 1448.78015
[112] Bliokh, K. Y.; Nori, F., Relativistic Hall effect, Phys. Rev. Lett., 108, 120403 (2012)
[113] Stone, M.; Dwivedi, V.; Zhou, T., Wigner translations and the observer-dependence of the position of massless spinning particles, Phys. Rev. Lett., 114, 210402 (2015)
[114] Bialynicki-Birula, I., Photon wave function, Prog. Opt., 36, 245-294 (1996)
[115] Barnett, S. M., Optical angular-momentum flux, J. Opt. B: Quantum Semiclass. Opt, 4, S7-S16 (2002)
[116] Azzam, R. M.A.; Bashara, N. M., Ellipsometry and Polarized Light (1977), North-Holland
[117] Schwartz, C.; Dogariu, A., Conservation of angular momentum of light in single scattering, Opt. Express, 14, 8425-8433 (2006)
[118] Bomzon, Z.; Gu, M., Space-variant geometrical phases in focused cylindrical light beams, Opt. Lett., 32, 3017-3019 (2007)
[119] Nieminen, T. A.; Stilgoe, A. B.; Heckenberg, N. R.; Rubinsztein-Dunlop, H., Angular momentum of a strongly focused Gaussian beam, J. Opt. A: Pure Appl. Opt., 10, 115005 (2008)
[120] Monteiro, P. B.; Neto, P. A.M.; Nussenzveig, H. M., Angular momentum of focused beams: Beyond the paraxial approximation, Phys. Rev. A, 120, 033830 (2009)
[121] Li, C.-F., Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization, Phys. Rev. A, 80, 063814 (2009)
[122] Rodríguez-Herrera, O. G.; Lara, D.; Bliokh, K. Y.; Ostrovskaya, E. A.; Dainty, C., Optical nanoprobing via spin-orbit interaction of light, Phys. Rev. Lett., 104, 253601 (2010)
[123] Bliokh, K. Y.; Ostrovskaya, E. A.; Alonso, M. A.; Rodríguez-Herrera, O.; Lara, D.; Dainty, C., Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems, Opt. Express, 19, 26132-26149 (2011)
[124] Gorodetski, Y.; Niv, A.; Kleiner, V.; Hasman, E., Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett., 101, 043903 (2008)
[125] Alonso, M. A., The effect of orbital angular momentum and helicity in the uncertainty-type relations between focal spot size and angular spread, J. Opt., 13, 064016 (2011)
[126] Bacry, H., Localizability and Space in Quantum Physics (1988), Springer: Springer Berlin · Zbl 0653.53049
[127] Skagerstam, B.-S., Lozalization of massless spinning particles and the Berry phase · Zbl 0942.81550
[128] Simpson, N. B.; Dholakia, K.; Allen, L.; Padgett, M. J., Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner, Opt. Lett., 22, 52-54 (1997)
[129] Afanasev, A.; Carlson, C. E.; Mukherjee, A., Off-axis excitation of hydrogenlike atoms by twisted photons, Phys. Rev. A, 88, 033841 (2013)
[130] Afanasev, A.; Carlson, C. E.; Mukherjee, A., Two properties of twisted-light absorption, J. Opt. Soc. Amer. B, 31, 2721-2727 (2014)
[131] Barnett, S. M.; Berry, M. V., Superweak momentum transfer near optical vortices, J. Opt., 15, 125701 (2013)
[132] Ashkin, A.; Gordon, J. P., Stability of radiation-pressure particle traps: an optical Earnshaw theorem, Opt. Lett., 8, 511-513 (1983)
[133] Chaumet, P. C.; Nieto-Vesperinas, M., Time-averaged total force on a dipolar sphere in an electromagnetic field, Opt. Lett., 25, 1065-1067 (2000)
[134] Canaguier-Durand, A.; Cuche, A.; Genet, C.; Ebbesen, T. W., Force and torque on an electric dipole by spinning light fields, Phys. Rev. A, 88, 033831 (2013)
[135] Ashkin, A., Optical Trapping and Manipulation of Neutral Particles Using Lasers (2006), World Scientific: World Scientific Singapore · Zbl 1138.81048
[136] Grier, D. G., A revolution in optical manipulation, Nature, 424, 810-816 (2003)
[137] Dienerowitz, M.; Mazilu, M.; Dholakia, K., Optical manipulation of nanoparticles: a review, J. Nanophoton., 2, 021875 (2008)
[138] Bowman, R. W.; Padgett, M. J., Optical trapping and binding, Rep. Progr. Phys., 76, 026401 (2013)
[139] Aspelmeyer, M.; Kippenberg, T. J.; Marquardt, F., Cavity optomechanics, Rev. Modern Phys., 86, 1391-1452 (2014)
[140] Huard, S.; Imbert, C., Measurement of exchanged momentum during interaction between surface-wave and moving atom, Opt. Commun., 24, 185-189 (1978)
[141] Matsudo, T.; Takahara, Y.; Hori, H.; Sakurai, T., Pseudomomentum transfer from evanescent waves to atoms measured by saturated absorption spectroscopy, Opt. Commun., 145, 64-68 (1998)
[142] Arlt, J., Handedness and azimuthal energy flow of optical vortex beams, J. Modern Opt., 50, 1573-1580 (2006)
[143] Leach, J.; Keen, S.; Padgett, M. J.; Saunter, C.; Love, G. D., Direct measurements of the skew angle of the Poynting vector in a helically phased beam, Opt. Express, 14, 11919-11924 (2006)
[144] Starikov, F. A.; Kochemasov, G. G.; Kulikov, S. M., Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor, Opt. Lett., 32, 2291-2293 (2007)
[145] Terborg, R. A.; Volke-Sepúlveda, K., Quantitative characterization of the energy circulation in helical beams by means of near-field diffraction, Opt. Express, 21, 3379-3387 (2013)
[146] Yeganeh, M.; Rasouli, S.; Dashti, M.; Slussarenko, S.; Santamato, E.; Karimi, E., Reconstruction the Poynting vector skew angle and wavefront of optical vortex beams via two-channel moire deflectometery, Opt. Lett., 38, 887-889 (2013)
[147] Kocsis, S.; Braverman, B.; Ravets, S.; Stevens, M. J.; Mirin, R. P.; Shalm, L. K.; Steinberg, A. M., Observing the average trajectories of single photons in a two-slit interferometer, Science, 332, 1170-1173 (2011) · Zbl 1355.81025
[148] Tang, Y.; Cohen, A. E., Enhanced enantioselectivity in excitation of chiral molecules by superchiral light, Science, 332, 333-336 (2011)
[149] Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M., Ultrasensitive detection and characterization of biomolecules using superchiral fields, Nature Nanotechnol., 5, 783-787 (2010)
[150] Yang, N.; Cohen, A. E., Local geometry of electromagnetic fields and its role in molecular multipole transitions, J. Phys. Chem. B, 115, 5304-5311 (2011)
[151] Mathevet, R.; Rikken, G. L.J. A., Magnetic circular dichroism as a local probe of the polarization of a focused Gaussian beam, Opt. Materials Express, 4, 2574-2585 (2014)
[152] Cohen-Tannoudji, C., Atoms in Electromagnetic Fields (2004), World Scientific: World Scientific Singapore
[153] Kawalec, T.; Jozefowski, L.; Fiutowski, J.; Kasprowicz, M. J.; Dohnalik, T., Spectroscopic measurements of the evanescent wave polarization state, Opt. Commun., 274, 341-346 (2007)
[154] Mitsch, R.; Sayrin, C.; Albrecht, B.; Schneeweiss, P.; Rauschenbeutel, A., Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms, Phys. Rev. A, 89, 063829 (2014)
[155] de Fornel, F., Evanescent Waves: From Newtonian Optics to Atomic Physics (2001), Springer
[156] Shadrivov, I. V.; Sukhorukov, A. A.; Kivshar, Y. S.; Zharov, A. A.; Boardman, A. D.; Egan, P., Nonlinear surface waves in left-handed materials, Phys. Rev. E, 69, 016617 (2004)
[157] Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A., Nano-optics of surface plasmon polaritons, Phys. Rep., 408, 131-314 (2005)
[158] Junge, C.; O’Shea, D.; Volz, J.; Rauschenbeutel, A., Strong coupling between single atoms and nontransversal photons, Phys. Rev. Lett., 110, 213604 (2013)
[159] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys., 70, 947-1018 (2007)
[160] Chang, S.; Lee, S. S., Optical torque exerted on a sphere in the evanescent field of a circularly-polarized Gaussian laser beam, Opt. Commun., 151, 286-296 (1998)
[162] Lee, K. G.; Kihm, H. W.; Kihm, J. E., Vector field macroscopic imaging of light, Nature Photon., 1, 53-56 (2007)
[163] Siegman, A. E., Lasers (1986), University Science Books: University Science Books Mill Valey
[164] Burresi, M.; Engelen, R. J.P.; Opheij, A.; van Oosten, D.; Mori, D.; Baba, T.; Kuipers, L., Observation of polarization singularities at the nanoscale, Phys. Rev. Lett., 102, 033902 (2009)
[165] Schnell, M.; Garcia-Etxarri, A.; Alkorta, J.; Aizpurua, J.; Hillenbrand, R., Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps, Nano Lett., 10, 3524-3528 (2010)
[166] Grosjean, T.; Ibrahim, I. A.; Suarez, M. A.; Burr, G. W.; Mivelle, M.; Charraut, D., Full vectorial imaging of electromagnetic light at subwavelength scale, Opt. Express, 18, 5809-5824 (2010)
[167] Bauer, T.; Orlov, S.; Peschel, U.; Banzer, P.; Leuchs, G., Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams, Nature Photon., 8, 23-27 (2014)
[168] Song, Y. G.; Chang, S.; Jo, J. H., Optically induced rotation of combined Mie particles within an evanescent field of a Gaussian beam, Japan. J. Appl. Phys., 38, L380-L383 (1999)
[169] Neugebauer, M.; Bauer, T.; Banzer, P.; Leuchs, G., Polarization tailored light driven directional optical nanobeacon, Nano Lett., 14, 2546-2551 (2014)
[170] Hasan, M. Z.; Kane, C. L., Topological insulators, Rev. Modern Phys., 82, 3045-3067 (2010)
[171] Qi, X.-L.; Zhang, S.-C., Topological insulators and superconductors, Rev. Modern Phys., 83, 1057-1110 (2011)
[172] Lu, L.; Joannopoulos, J. D.; Soljacic, M., Topological photonics, Nature Photon., 8, 821-829 (2011)
[173] Liberman, V. S.; Zel’dovich, B. Y., Spin-orbit interaction of a photon in an inhomogeneous medium, Phys. Rev. A, 46, 5199-5207 (1992)
[174] Bliokh, K. Y.; Aiello, A.; Alonso, M. A., Spin-orbit interactions of light in isotropic media, (Andrews, D. L.; Babiker, M., The Angular Momentum of Light (2013), Cambridge University Press)
[175] Bliokh, K. Y.; Rodríguez-Fortuño, F. J.; Nori, F.; Zayats, A. V., Spin-orbit interactions of light
[176] Dooghin, A. V.; Kundikova, N. D.; Liberman, V. S.; Zel’dovich, B. Y., Optical Magnus effect, Phys. Rev. A, 45, 8204-8208 (1992)
[177] Baranova, N. B.; Savchenko, A. Y.; Zel’dovich, B. Y., Transverse shift of a focal spot due to switching of the sign of circular-polarization, JETP Lett., 59, 232-234 (1994)
[178] Zel’dovich, B. Y.; Kundikova, N. D.; Rogacheva, L. F., Observed transverse shift of a focal spot upon a change in the sign of circular polarization, JETP Lett., 59, 766-769 (1994)
[179] Fedoseyev, V. G., Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam, Opt. Commun., 193, 9-18 (2001)
[180] Bliokh, K. Y.; Bliokh, Y. P., Topological spin transport of photons: the optical Magnus effect and Berry phase, Phys. Lett. A, 333, 181-186 (2004) · Zbl 1123.78301
[181] Dasgupta, R.; Gupta, P. K., Experimental observation of spin-independent transverse shift of the centre of gravity of a reflected Laguerre-Gaussian light beam, Opt. Commun., 257, 91-96 (2006)
[182] Bliokh, K. Y.; Gorodetski, Y.; Kleiner, V.; Hasman, E., Coriolis effect in optics: Unified geometric phase and spin-Hall effect, Phys. Rev. Lett., 101, 030404 (2008)
[183] Haefner, D.; Sukhov, S.; Dogariu, A., Spin Hall Effect of light in spherical geometry, Phys. Rev. Lett., 102, 123903 (2009)
[184] Garbin, V.; Volpe, G.; Ferrari, E.; Versluis, M.; Cojoc, D.; Petrov, D., Mie scattering distinguishes the topological charge of an optical vortex: a homage to Gustav Mie, New J. Phys., 11, 013046 (2009)
[185] Shitrit, N.; Bretner, I.; Gorodetski, Y.; Kleiner, V.; Hasman, E., Optical spin Hall effects in plasmonic chains, Nano Lett., 11, 2038-2042 (2011)
[186] Fedorov, F. I., To the theory of total reflection, Doklady Akademii Nauk SSSR, 105, 465-468 (1955), translated and reprinted in J. Opt. 15, 014002 (2013)]
[187] Imbert, C., Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D, 5, 787-796 (1972)
[188] Dennis, M. R.; Götte, J. B., The analogy between optical beam shifts and quantum weak measurements, New J. Phys., 14, 073013 (2012) · Zbl 1448.78008
[189] Aharonov, Y.; Albert, D. Z.; Vaidman, L., How the results of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett., 11, 1351-1354 (1988)
[190] Duck, I. M.; Stevenson, P. M.; Sudarshan, E. C.G., The sense in which a weak measurement of a spin-1/2 particle’s spin component yields a values 100, Phys. Rev. D, 40, 2112-2117 (1989)
[191] Aharonov, Y.; Popescu, S.; Tollaksen, J., A time-symmetric formulation of quantum mechanics, Phys. Today, 27-32 (2010), November
[192] Kofman, A. G.; Ashhab, S.; Nori, F., Nonperturbative theory of weak pre- and post-selected measurements, Phys. Rep., 520, 43-133 (2010)
[193] Dressel, J.; Malik, M.; Miatto, F. M.; Jordan, A. N.; Boyd, R. W., Understanding quantum weak values: Basics and applications, Rev. Modern Phys., 86, 307-316 (2014)
[194] Bekshaev, A. Y., Polarization-dependent transformation of a paraxial beam upon reflection and refraction: A real-space approach, Phys. Rev. A, 85, 023842 (2012)
[195] Kravtsov, Y. A.; Orlov, Y. I., Geometrical Optics of Inhomogeneous Media (1990), Springer: Springer Berlin
[196] Bliokh, K. Y., Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium, J. Opt. A: Pure Appl. Opt., 11, 094009 (2009)
[197] Murakami, S.; Nagaosa, N.; Zhang, S.-C., Dissipationless quantum spin current at room temperature, Science, 301, 1348-1351 (2003)
[198] Bérard, A.; Mohrbach, H., Spin Hall effect and Berry phase of spinning particles, Phys. Lett. A, 352, 190-195 (2006) · Zbl 1187.81143
[199] Duval, C.; Horváth, Z.; Horváthy, P. A., Fermat principle for spinning light, Phys. Rev. D, 74, 021701(R) (2006)
[200] Bekshaev, A. Y., Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum, J. Opt. A: Pure Appl. Opt., 11, 094003 (2009)
[201] Korger, J., Observation of the geometric spin Hall effect of light, Phys. Rev. Lett., 112, 113902 (2014)
[202] Wolter, H., Zur frage des lichtweges bei totalreflexion, Z. Naturf., 5, 276-283 (1950), translated to English and reprinted as H. Wolter, Concerning the path of light upon total reflection, J. Opt. A: Pure Appl. Opt. 11, 090401 (2009) · Zbl 0036.42202
[203] Braunbek, W.; Laukien, G., Einzelheiten zur halbebenen-beugung, Optik, 9, 174-179 (1952)
[204] Boivin, A.; Dow, J.; Wolf, E., Energy flow in the neighborhood of the focus of a coherent beam, J. Opt. Soc. Amer., 57, 1171-1175 (1967)
[205] Pas’ko, V. A.; Soskin, M. S.; Vasnetsov, M. V., Transverse optical vortex, Opt. Commun., 198, 49-56 (2001)
[206] Dennis, M. R.; Götte, J. B., Beam shifts for pairs of plane waves, J. Opt., 15, 014015 (2013)
[207] Landau, L. D.; Lifshitz, E. M., Classical Theory of Fields (1994), Butterworth-Heinemann: Butterworth-Heinemann Amsterdam · Zbl 0178.28704
[208] Rindler, W., Introduction to Special Relativity (1982), Clarendon Press: Clarendon Press Oxford · Zbl 0507.70001
[209] Muller, R. A., Thomas precession: Where is the torque?, Amer. J. Phys., 60, 313-317 (1992)
[210] Chen, J.-Y.; Son, D. T.; Stephanov, M. A.; Yee, H.-U.; Yin, Y., Lorentz invariance in chiral kinetic theory, Phys. Rev. Lett., 113, 182302 (2014)
[211] Duval, C.; Horváthy, P. A., Chiral fermions as classical massless particles, Phys. Rev. D, 91, 045013 (2015)
[212] Duval, C.; Elbistan, M.; Horváthy, P. A.; Zhang, P.-M., Wigner-Souriau translations and Lorentz symmetry of chiral fermions, Phys. Lett. B, 742, 322-326 (2015) · Zbl 1345.81049
[213] Sukhorukov, A. P.; Yangirova, V. V., Spatio-temporal vortices: properties, generation and recording, Proc. SPIE, 5949, 594906 (2005)
[214] Masajada, J.; Dubik, B., Optical vortex generation by three plane wave interference, Opt. Commun., 198, 21-27 (2001)
[215] Harwit, M., Photon orbital angular momentum in atsrophysics, Astrophys. J., 597, 1266-1270 (2003)
[216] Berkhout, G. C.G.; Beijersbergen, M. W., Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects, Phys. Rev. Lett., 216, 100801 (2008)
[217] Tamburini, F.; Thidé, B.; Molina-Terriza, G.; Anzolin, G., Twisting of light around rotating black holes, Nat. Phys., 7, 195-197 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.