×

Investigations of isotropy and homogeneity of spacetime in first-order logic. (English) Zbl 07566288

Summary: We investigate the logical connection between (spatial) isotropy, homogeneity of space, and homogeneity of time within a general axiomatic framework. We show that isotropy not only entails homogeneity of space, but also, in certain cases, homogeneity of time. In turn, homogeneity of time implies homogeneity of space in general, and the converse also holds true in certain cases. An important innovation in our approach is that formulations of physical properties are simultaneously empirical and axiomatic (in the sense of first-order mathematical logic). In this case, for example, rather than presuppose the existence of spacetime metrics – together with all the continuity and smoothness apparatus that would entail – the basic logical formulas underpinning our work refer instead to the sets of (idealised) experiments that support the properties in question, e.g., isotropy is axiomatised by considering a set of experiments whose outcomes remain unchanged under spatial rotation. Higher-order constructs are not needed.

MSC:

03B30 Foundations of classical theories (including reverse mathematics)
83A05 Special relativity
03B10 Classical first-order logic
03B80 Other applications of logic
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andréka, H.; Madarász, J. X.; Németi, I., Logical axiomatizations of space-time. Samples from the literature, (Prékopa, A.; Molnár, E., Non-Euclidean Geometries: János Bolyai Memorial Volume (2006), Springer Verlag), 155-185 · Zbl 1102.03037
[2] Andréka, H.; Madarász, J. X.; Németi, I., Logic of space-time and relativity theory, (Aiello, M.; Pratt-Hartmann, I.; Benthem, J., Handbook of Spatial Logics (2007), Springer: Springer Netherlands, Dordrecht), 607-711
[3] Andréka, H.; Madarász, J. X.; Németi, I.; Székely, G., Axiomatizing relativistic dynamics without conservation postulates, Stud. Log., 89, 2, 163-186 (2008) · Zbl 1148.03028
[4] Andréka, H.; Madarász, J. X.; Németi, I.; Székely, G., A logic road from special relativity to general relativity, Synthese, 186, 3, 633-649 (2011) · Zbl 1275.03069
[5] Andréka, H.; Madarász, J. X.; Németi, I.; Székely, G., What are the numbers in which spacetime? (2012)
[6] Andréka, H.; Madarász, J. X.; Németi, I.; Andai, A.; Sági, G.; Sain, I.; Tőke, Cs., On the logical structure of relativity theories (2002), Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci.: Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci. Budapest, Research report
[7] Andréka, H.; Németi, I., Comparing theories: the dynamics of changing vocabulary, (Baltag, A.; Smets, S., Johan van Benthem on Logic and Information Dynamics (2014), Springer Verlag), 143-172 · Zbl 1344.03009
[8] Ax, J., The elementary foundations of spacetime, Found. Phys., 8, 7-8, 507-546 (1978)
[9] Budden, T., A star in the Minkowskian sky: anisotropic special relativity, Stud. Hist. Philos. Sci. B, 28, 3, 325-361 (1997) · Zbl 1222.83021
[10] Cocco, L.; Babic, J., A system of axioms for Minkowski spacetime, J. Philos. Log. (Jul 2020)
[11] Dixon, W., Special Relativity: The Foundation of Macroscopic Physics (2009), CUP · Zbl 0485.53055
[12] Formica, G.; Friend, M., In the footsteps of Hilbert: the Andréka-Németi group’s logical foundations of theories in physics, (Hajnal Andréka and István Németi on Unity of Science: from Computing to Relativity Theory Through Algebraic Logic, Outstanding Contributions to Logic (2021), Springer), 383-408 · Zbl 1482.83001
[13] Friend, M., On the epistemological significance of the Hungarian project, Synthese, 192, 7, 2035-2051 (2015) · Zbl 1357.03032
[14] Friend, M.; Molinini, D., Using mathematics to explain a scientific theory, Philos. Math., 24, 2, 185-213 (2015) · Zbl 1357.00015
[15] Goldblatt, R., Orthogonality and Spacetime Geometry (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0622.51001
[16] Gömöri, M., The principle of relativity—an empiricist analysis (2015), Eötvös University: Eötvös University Budapest, PhD thesis
[17] Gömöri, M.; Szabó, L. E., Formal statement of the special principle of relativity, Synthese, 192, 7, 2053-2076 (2015) · Zbl 1360.83004
[18] Govindarajalulu, N. S.; Bringsjord, S.; Taylor, J., Proof verification and proof discovery for relativity, Synthese, 192, 7, 2077-2094 (Jul 2015) · Zbl 1404.68134
[19] Hilbert, D., Mathematical problems, Bull. Am. Math. Soc., 8, 437-479 (1902) · JFM 33.0976.07
[20] Lefever, K., Using logical interpretation and definitional equivalence to compare classical kinematics and special relativity theory (2017), Vrije Universiteit Brussel, PhD thesis
[21] Luo, Y.-C.; Chen, L.; He, K.-T.; Ma, Y.-G.; Zhang, X.-Z., Axiomatization of special relativity in first order logic, Commun. Theor. Phys., 66, 19-28 (2016) · Zbl 1345.83004
[22] Madarász, Judit X.; Székely, Gergely; Stannett, Mike, Groups of worldview transformations implied by Einstein’s special principle of relativity over arbitrary ordered fields, Rev. Symb. Log., 15, 2, 334-361 (2022) · Zbl 07531428
[23] Madarász, Judit X.; Székely, Gergely; Stannett, Mike, Groups of worldview transformations implied by isotropy of space, J. Appl. Log., 8, 3, 809-876 (2021) · Zbl 1515.51016
[24] Madarász, J. X.; Stannett, M.; Székely, G., Why do the relativistic masses and momenta of faster-than-light particles decrease as their speeds increase?, (Symmetry, Integrability and Geometry: Methods and Applications. Symmetry, Integrability and Geometry: Methods and Applications, SIGMA, vol. 10 (2014)), 20 · Zbl 1302.83003
[25] Madarász, J. X.; Stannett, M.; Székely, G., Three different formalisations of Einstein’s relativity principle, Rev. Symb. Log., 10, 3, 530-548 (September 2017) · Zbl 1421.03004
[26] Madarász, J. X.; Székely, G., Special relativity over the field of rational numbers, Int. J. Theor. Phys., 52, 5, 1706-1718 (2013) · Zbl 1272.83005
[27] Mamone-Capria, M., Spatial directions, anisotropy and special relativity, Found. Phys., 41, 1375-1397 (2011) · Zbl 1252.83008
[28] Mamone-Capria, M., On the fundamental theorem of the theory of relativity, Found. Phys., 46, 12, 1680-1712 (Dec. 2016) · Zbl 1368.83016
[29] Pambuccian, V., Alexandrov-Zeeman type theorems expressed in terms of definability, Aequ. Math., 74, 3, 249-261 (Dec. 2007) · Zbl 1141.03007
[30] Rindler, W., Relativity: Special, General and Cosmological (2001), Oxford University: Oxford University Oxford · Zbl 0981.83001
[31] Schutz, J. W., Independent Axioms for Minkowski Space-Time (1997), Longman: Longman London · Zbl 0891.51012
[32] Snapper, E.; Troyer, R. J., Metric Affine Geometry (1971), Academic Press · Zbl 0224.50006
[33] Stannett, M.; Németi, I., Using Isabelle/HOL to verify first-order relativity theory, J. Autom. Reason., 52, 4, 361-378 (Apr 2014) · Zbl 1314.68287
[34] Suppes, P., Axioms for relativistic kinematics with or without parity, (Symposium on the Axiomatic Method with Special Reference to Physics (1959)), 291-307 · Zbl 0087.22601
[35] Szabó, L. E., Empirical foundation of space and time, (Suárez, M.; Dorato, M.; Rédei, M., EPSA07: Launch of the European Philosophy of Science Association (2009), Springer Verlag)
[36] Székely, G., First-order logic investigation of relativity theory with an emphasis on accelerated observers (2009), Eötvös Loránd University: Eötvös Loránd University Budapest, PhD thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.