×

A new Poisson noise filter based on weights optimization. (English) Zbl 1296.65035

Summary: We propose a new image denoising algorithm when the data is contaminated by a Poisson noise. As in the Non-Local Means filter, the proposed algorithm is based on a weighted linear combination of the observed image. But in contrast to the latter where the weights are defined by a Gaussian kernel, we propose to choose them in an optimal way. First some “oracle” weights are defined by minimizing a very tight upper bound of the Mean Square Error. For a practical application the weights are estimated from the observed image. We prove that the proposed filter converges at the usual optimal rate to the true image. Simulation results are presented to compare the performance of the presented filter with conventional filtering methods.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry

Software:

ThreshLab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abraham, I., Abraham, R., Desolneux, A., Li-Thiao-Te, S.: Significant edges in the case of non-stationary gaussian noise. Pattern Recognit. 40(11), 3277-3291 (2007) · Zbl 1120.68090 · doi:10.1016/j.patcog.2007.02.015
[2] Aharon, M., Elad, M., Bruckstein, A.: \[rmk\] rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311-4322 (2006) · Zbl 1375.94040 · doi:10.1109/TSP.2006.881199
[3] Anscombe, F.J.: The transformation of poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246-254 (1948) · Zbl 0032.03702 · doi:10.2307/2332343
[4] Bardsley, J.M., Luttman, A.: Total variation-penalized poisson likelihood estimation for ill-posed problems. Adv. Comput. Math. 31(1), 35-59 (2009) · Zbl 1171.94001 · doi:10.1007/s10444-008-9081-8
[5] Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419-2434 (2009) · Zbl 1371.94049 · doi:10.1109/TIP.2009.2028250
[6] Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib. Math. J. 41(5), 811-848 (2000) · Zbl 0969.60047 · doi:10.1007/BF02674739
[7] Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490-530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[8] Buades, T., Lou, Y., Morel, J.M., Tang, Z.: A note on multi-image denoising. In: International Workshop on Local and Non-Local Approximation in Image Processing, pp. 1-15 (2009) · Zbl 1089.62033
[9] Deledalle, C.-A., Tupin, F., Denis, L.: Poisson nl means: Unsupervised non local means for poisson noise. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, pp. 801-804. IEEE (2010) · Zbl 1242.60020
[10] Fan, J.: Local linear regression smoothers and their minimax efficiencies. Ann. Stat. 21(1), 196-216 (1993) · Zbl 0773.62029
[11] Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Monographs on Statistics and Applied Probability, vol. 66. Chapman and Hall (1996) · Zbl 0873.62037
[12] Fryzlewicz, P., Delouille, V., Nason, G.P.: Goes-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform. J. R. Stat. Soc. Ser. C 56(1), 99-116 (2007) · Zbl 1490.62507 · doi:10.1111/j.1467-9876.2007.00567.x
[13] Fryzlewicz, P., Nason, G.P.: A Haar-Fisz algorithm for poisson intensity estimation. J. Comput. Graph. Stat. 13(3), 621-638 (2004) · doi:10.1198/106186004X2697
[14] Hammond, D.K., Simoncelli, E.P.: Image modeling and denoising with orientation-adapted gaussian scale mixtures. IEEE Trans. Image Process. 17(11), 2089-2101 (2008) · Zbl 1371.94153 · doi:10.1109/TIP.2008.2004796
[15] Hirakawa, K., Parks, T.W.: Image denoising using total least squares. IEEE Trans. Image Process. 15(9), 2730-2742 (2006) · doi:10.1109/TIP.2006.877352
[16] Jansen, M.: Multiscale poisson data smoothing. J. R. Stat. Soc. B 68(1), 27-48 (2006) · Zbl 1141.62014 · doi:10.1111/j.1467-9868.2005.00531.x
[17] Jin, Q., Grama, I., Liu, Q.: Removing gaussian noise by optimization of weights in non-local means. arXiv, preprint arXiv:1109.5640 (2011) · Zbl 1177.94030
[18] Jin, Q., Grama, I., Liu, Q.: A non-local means filter for removing the poisson noise. Preprint (2012) · Zbl 1371.94223
[19] Jin, Q., Grama, I., Liu, Q.: Removing poisson noise by optimization of weights in non-local means. In: Photonics and Optoelectronics (SOPO), 2012 Symposium on, pp. 1-4. IEEE (2012)
[20] Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1-32 (2010) · Zbl 1477.94014 · doi:10.1007/s11263-009-0272-7
[21] Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866-2878 (2006) · doi:10.1109/TIP.2006.877529
[22] Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by poisson noise. J. Math. Imaging Vis. 27(3), 257-263 (2007) · doi:10.1007/s10851-007-0652-y
[23] Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724-1741 (2009) · Zbl 1371.94223 · doi:10.1109/TIP.2009.2022008
[24] Luisier, F., Vonesch, C., Blu, T., Unser, M.: Fast interscale wavelet denoising of poisson-corrupted images. Signal Process. 90(2), 415-427 (2010) · Zbl 1177.94030 · doi:10.1016/j.sigpro.2009.07.009
[25] Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7(1), 214-241 (2008) · Zbl 1194.49041 · doi:10.1137/070697653
[26] Makitalo, M., Foi, A.: On the inversion of the anscombe transformation in low-count poisson image denoising. In: Proceedings International Workshop on Local and Non-Local Approx. in Image Process., LNLA 2009, Tuusula, Finland, pp. 26-32. IEEE (2009) · Zbl 1372.94173
[27] Makitalo, M., Foi, A.: Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Trans. Image Process. 20(1), 99-109 (2011) · Zbl 1372.94173 · doi:10.1109/TIP.2010.2056693
[28] Mandel, J.: Use of the singular value decomposition in regression analysis. Am. Stat. 36(1), 15-24 (1982)
[29] Merlevède, F., Peligrad, M., Rio, E.: A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151(3-4), 435-474 (2011) · Zbl 1242.60020 · doi:10.1007/s00440-010-0304-9
[30] Nowak, R., Kolaczyk, E.D.: A multiscale map estimation method for poisson inverse problems. In: 32nd Asilomar Conference Signals, Systems, and Computers, vol. 2, pp. 1682-1686. IEEE (1998)
[31] Nowak, R.D., Kolaczyk, E.D.: A statistical multiscale framework for poisson inverse problems. IEEE Trans. Inf. Theory 46(5), 1811-1825 (2000) · Zbl 0999.94004 · doi:10.1109/18.857793
[32] Polzehl, J., Spokoiny, V.: Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. 135(3), 335-362 (2006) · Zbl 1089.62033 · doi:10.1007/s00440-005-0464-1
[33] Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338-1351 (2003) · Zbl 1279.94028 · doi:10.1109/TIP.2003.818640
[34] Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183-238 (1993) · Zbl 0779.49024
[35] Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205-229 (2009) · Zbl 1477.68419 · doi:10.1007/s11263-008-0197-6
[36] Sacks, J., Ylvisaker, D.: Linear estimation for approximately linear models. Ann. Stat. 6(5), 1122-1137 (1978) · Zbl 0384.62058 · doi:10.1214/aos/1176344315
[37] Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Visual Commun. Image Represent. 21(3), 193-199 (2010) · doi:10.1016/j.jvcir.2009.10.006
[38] Terrell, G.R., Scott, D. W.: Variable kernel density estimation. Ann. Stat. 20(3), 1236-1265 (1992) · Zbl 0763.62024
[39] Whittle, P.: Optimization Under Constraints: Theory and Applications of Nonlinear Programming. Wiley, New York (1971) · Zbl 0218.90041
[40] Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans. Image Process. 17(7), 1093-1108 (2008) · doi:10.1109/TIP.2008.924386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.