×

An enriched damage-frictional cohesive-zone model incorporating stress multi-axiality. (English) Zbl 1384.74005

Summary: The paper presents an interphase cohesive zone model (CZM) incorporating stress multi-axiality devised to capture, by simplified micro-modeling, the influence of the in-plane strain and stress state in the mechanical response of the CZM. Moreover, the model is able to account for the Poisson-related effect in the interphase, which can play an important role in the modeling of heterogeneous masonry elements. From the constitutive point of view, the proposed formulation couples damage and friction by addressing a smooth transition from a quasi-brittle response to a residual frictional behavior described by a Coulomb law with unilateral contact. As in-plane stresses are accounted for, damage activation and evolution are governed by a Drucker-Prager law with linear softening. A predictor-corrector procedure based on a backward Euler scheme is detailed for integrating the nonlinear evolutive problem together with the related tangent operator which consistently linearizes the algorithmic strategy. This framework is embedded into a kinematically-enriched finite element interphase formulation incorporating stress multi-axiality. The modeling features of the resulting numerical tool are tested both at the local level, for the typical interphase point, and in meso-structural tests consisting of brick-mortar triplets, investigating the capability of the proposed model and numerical procedure to simulate the brick-mortar decohesion mechanism during confined slip tests.

MSC:

74A45 Theories of fracture and damage
74M10 Friction in solid mechanics
74R05 Brittle damage

Software:

deal.ii
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Addessi D, Sacco E (2016) Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int J Solids Struct 90:194-214 · doi:10.1016/j.ijsolstr.2016.03.002
[2] Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68(5):542-582 · Zbl 1275.74021 · doi:10.1002/nme.1728
[3] Balzani C, Wagner W (2008) An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng Fract Mech 75(9):2597-2615 · doi:10.1016/j.engfracmech.2007.03.013
[4] Bangerth W, Heister T, Kanschat G et al The deal.II Differential Equations Analysis Library, Technical Reference. http://www.dealii.org
[5] Barenblatt GI (1962) Mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(55):55-129 · doi:10.1016/S0065-2156(08)70121-2
[6] Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415-1438 · doi:10.1177/0021998303034505
[7] Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct 39(10):2827-2855 · Zbl 1087.74500 · doi:10.1016/S0020-7683(02)00149-X
[8] de Borst R, Remmers JC, Verhoosel CV (2014) Evolving discontinuities and cohesive fracture. Proc IUTAM 10:125-137 · doi:10.1016/j.piutam.2014.01.014
[9] Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100-104 · doi:10.1016/0022-5096(60)90013-2
[10] Freddi F, Sacco E (2014) An interface damage model accounting for in-plane effects. Int J Solids Struct 51(25):4230-4244 · doi:10.1016/j.ijsolstr.2014.08.010
[11] Freddi F, Sacco E (2015) Mortar joints influence in debonding of masonry element strengthened with frp. Key Eng Mater 624:197-204 · doi:10.4028/www.scientific.net/KEM.624.197
[12] Freddi F, Sacco E (2016) A damage model for a finite thickness composite interface accounting for in-plane deformation. Eng Fract Mech 163:396-415 · doi:10.1016/j.engfracmech.2016.06.001
[13] Freddi F, Sacco E (2016) An interphase model for the analysis of the masonry-frp bond. Compos Struct 138:322-334 · doi:10.1016/j.compstruct.2015.11.041
[14] Giambanco G, Fileccia Scimemi G, Spada A (2012) The interphase finite element. Comput Mech 50(3):353-366 · Zbl 1294.74063 · doi:10.1007/s00466-011-0664-8
[15] Giambanco G, Mroz Z (2011) The interphase model for the analysis of joints in rock masses and masonry structures. Meccanica 36(1):111-130 · Zbl 1012.74044 · doi:10.1023/A:1011957217840
[16] Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr Res 6:773-782 · doi:10.1016/0008-8846(76)90007-7
[17] Hilsdorf, HK; Johnson, FB (ed.), Investigation into the failure mechanism of brick masonry loaded in axial compression, 34-41 (1969), Houston, Tex
[18] Keller K, Weihe S, Siegmund T, Kröplin B (1999) Generalized cohesive zone model: incorporating triaxiality dependent failure mechanisms. Comput Mater Sci 16(1):267-274 · doi:10.1016/S0927-0256(99)00069-5
[19] Lebon F, Rizzoni R (2010) Asymptotic analysis of a thin interface: the case involving similar rigidity. Int J Eng Sci 48(5):473-486 · Zbl 1213.74249 · doi:10.1016/j.ijengsci.2009.12.001
[20] Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660-668 · doi:10.1061/(ASCE)0733-9399(1997)123:7(660)
[21] Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59(8):1647-1668 · Zbl 1270.74013 · doi:10.1016/j.jmps.2011.04.012
[22] Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267-1282 · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[23] Paggi M, Wriggers P (2012) Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces. J Mech Phys Solids 60(4):557-572 · doi:10.1016/j.jmps.2012.01.009
[24] Panagiotis AG, Vagelis P (2015) Handbook of research on seismic assessment and rehabilitation of historic structures. IGI Global, Hershey
[25] Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64:060802 · doi:10.1115/1.4023110
[26] Reinoso J, Paggi M (2014) A consistent interface element formulation for geometrical and material nonlinearities. Comput Mech 54(6):1569-1581 · Zbl 1309.74011 · doi:10.1007/s00466-014-1077-2
[27] Reinoso J, Paggi M, Blázquez A (2017) A nonlinear finite thickness cohesive interface element for modeling delamination in fibre-reinforced composite laminates. Compos Part B Eng 109:116-128 · doi:10.1016/j.compositesb.2016.10.042
[28] Schreyer HL (2007) Modelling surface orientation and stress at failure of concrete and geological materials. Int J Numer Anal Methods Geomech 31(2):147-171 · Zbl 1119.74032 · doi:10.1002/nag.557
[29] Serpieri R, Albarella M, Sacco E (2017) A 3d two-scale multiplane cohesive-zone model for mixed-mode fracture with finite dilation. Comput Methods Appl Mech Eng 313:857-888 · Zbl 1439.74372 · doi:10.1016/j.cma.2016.10.021
[30] Serpieri R, Alfano G, Sacco E (2015) A mixed-mode cohesive-zone model accounting for finite dilation and asperity degradation. Int J Solids Struct 67:102-115 · doi:10.1016/j.ijsolstr.2015.04.005
[31] Serpieri R, Sacco E, Alfano G (2015) A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode I and mode II fracture energies. Eur J Mech A Solids 49:13-25 · Zbl 1406.74575 · doi:10.1016/j.euromechsol.2014.06.006
[32] Tijssens MGA, Van der Giessen E, Sluys LJ (2000) Modeling of crazing using a cohesive surface methodology. Mech Mater 32(1):19-35 · doi:10.1016/S0167-6636(99)00044-7
[33] Valluzzi MR, Oliveira DV, Caratelli A, Castori G, Corradi M, De Felice G, Garbin E, Garcia D, Garmendia L, Grande E et al (2012) Round robin test for composite-to-brick shear bond characterization. Mater Struct 45(12):1761-1791 · doi:10.1617/s11527-012-9883-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.