×

On the algebraic \(K\)-theory of higher categories. (English) Zbl 1364.19001

The purpose of this paper is to extend Waldhausen’s algebraic \(K\)-theory from the setting of categories with cofibrations to a more general framework of what the author calls Waldhausen \(\infty\)-categories. The first part of the paper is devoted to the development of this framework. The first step is to describe pairs of quasicategories, mimicking the structure of a category together with a subcategory of cofibrations. A Waldhausen \(\infty\)-category is defined to be such a pair of quasicategories, satisfying additional axioms which are analogous to the ones used in Waldhausen’s original formulation. The collection of all such is also given the structure of a quasicategory.
The next major step in this work is to extend the theory of cartesian and cocartesian fibrations into this setting. This portion of the paper is lengthy, but takes time to recall the definitions in the ordinary quasicategorical setting and what their purpose is, which is useful for readers not fluent with these methods. These definitions are then generalized, first to the setting of pairs and then to the Waldhausen context. The first section concludes with the development of the derived \(\infty\)-category of Waldhausen \(\infty\)-categories, whose objects are simplicial presheaves on a category of sufficiently small Waldhausen \(\infty\)-categories and referred to as virtual Waldhausen \(\infty\)-categories. Along the way, many useful properties of the quasicategory of Waldhausen \(\infty\)-categories are established, such as accessibility.
The second main section of the paper is concerned with the development of filtered objects in a Waldhausen \(\infty\)-category and then the construction of the analogue of the \(S_\bullet\)-construction in this setting. A key definition is that of a fissile virtual Waldhausen \(\infty\)-category; the sub-quasicategory of these objects is given by a localization, and on it the suspension functor has a nice description which allows for the definition of the \(S_\bullet\)-construction. This localized context allows for an analogue of the additivity theorem and a description of the additivization functor as a Goodwillie derivative. This section concludes with a definition of labeled Waldhausen \(\infty\)-categories, which are the generalization of Waldhausen’s categories with cofibrations and weak equivalences.
Finally, with all the foundations in place, the author treats the algebraic \(K\)-theory functor in the last part. The definition is given via additivization of a functor, as given in the previous part, but representability and universality results are established here. The paper concludes with two specific examples. The first is the algebraic \(K\)-theory of \(E_1\)-algebras, and the second is the algebraic \(K\)-theory of spectral Deligne-Mumford stacks.

MSC:

19D10 Algebraic \(K\)-theory of spaces
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18G30 Simplicial sets; simplicial objects in a category (MSC2010)
55U10 Simplicial sets and complexes in algebraic topology
55U40 Topological categories, foundations of homotopy theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF02392794 · Zbl 1019.18008 · doi:10.1007/BF02392794
[2] Barwick, Multiplicative structures on algebraic \(K\) -theory, Doc. Math. 20 pp 859– (2015)
[3] Barwick, On exact \(\infty \) -categories and the theorem of the heart · Zbl 1333.19003
[4] DOI: 10.1016/j.indag.2011.10.002 · Zbl 1245.18006 · doi:10.1016/j.indag.2011.10.002
[5] Barwick C. Kan D. M. , ’From partial model categories to \(\infty \) -categories’, Preprint from the web page of the author, 2013.
[6] Barwick, On the unicity of the homotopy theory of higher categories
[7] DOI: 10.1090/S0002-9939-07-08924-1 · Zbl 1126.55003 · doi:10.1090/S0002-9939-07-08924-1
[8] DOI: 10.1090/S0002-9947-06-03987-0 · Zbl 1114.18006 · doi:10.1090/S0002-9947-06-03987-0
[9] DOI: 10.1016/j.top.2007.03.002 · Zbl 1119.55010 · doi:10.1016/j.top.2007.03.002
[10] Bergner, Complete Segal spaces arising from simplicial categories, Trans. Amer. Math. Soc. 361 pp 525– (2009) · Zbl 1158.55022 · doi:10.1090/S0002-9947-08-04616-3
[11] Bergner J. E. , ’A survey of \((\infty ,1)\) -categories’, Towards higher categories (eds J. Baez and J. P. May), IMA Volumes in Mathematics and Its Applications 152 (Springer, New York, 2010) 69–83. · Zbl 1200.18011
[12] Berthelot P. , Grothendieck A. Illusie L. , ’Théorie des intersections et théorème de Riemann-Roch’, Séminaire de Géométrie Algébrique du Bois Marie 1966–67 (SGA 6), Avec la collaboration de D. Ferrand , J. P. Jouanolou , O. Jussila , S. Kleiman , M. Raynaud , J. P. Serre . Lecture Notes in Mathematics 225 (Springer, Berlin, 1966–67).
[13] Blumberg, Uniqueness of the multiplicative cyclotomic trace · Zbl 1297.19002 · doi:10.1016/j.aim.2014.02.004
[14] Blumberg A. J. , Gepner D. Tabuada G. , A universal characterization of higher algebraic \(K\) -theory’, Geom. Topol., to appear. · Zbl 1267.19001 · doi:10.2140/gt.2013.17.733
[15] DOI: 10.1007/s11511-008-0025-4 · Zbl 1149.18008 · doi:10.1007/s11511-008-0025-4
[16] DOI: 10.1016/j.aim.2010.11.002 · Zbl 1217.19003 · doi:10.1016/j.aim.2010.11.002
[17] DOI: 10.1112/jtopol/jtr003 · Zbl 1236.19001 · doi:10.1112/jtopol/jtr003
[18] Boardman J. M. Vogt R. M. , Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347 (Springer, Berlin, 1973). · Zbl 0285.55012
[19] Cisinski, Invariance de la \(K\) -théorie par équivalences dérivées, J. K-Theory 6 pp 505– (2010) · Zbl 1230.19002 · doi:10.1017/is009010008jkt094
[20] Dwyer W. G. , Hirschhorn P. S. , Kan D. M. Smith J. H. , Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs 113 (American Mathematical Society, Providence, RI, 2004). · Zbl 1072.18012
[21] DOI: 10.1016/0022-4049(80)90113-9 · Zbl 0485.18013 · doi:10.1016/0022-4049(80)90113-9
[22] DOI: 10.1016/0040-9383(80)90025-7 · Zbl 0438.55011 · doi:10.1016/0040-9383(80)90025-7
[23] DOI: 10.1016/0022-4049(80)90049-3 · Zbl 0485.18012 · doi:10.1016/0022-4049(80)90049-3
[24] Elmendorf A. D. , Kriz I. , Mandell M. A. May J. P. , Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47 (American Mathematical Society, Providence, RI, 1997). With an appendix by M. Cole.
[25] DOI: 10.1016/j.aim.2005.07.007 · Zbl 1117.19001 · doi:10.1016/j.aim.2005.07.007
[26] Fiore
[27] Goodwillie, Calculus. I. The first derivative of pseudoisotopy theory, K-Theory 4 pp 1– (1990) · Zbl 0741.57021 · doi:10.1007/BF00534191
[28] Goodwillie T. G. , ’The differential calculus of homotopy functors’, Proceedings of the International Congress of Mathematicians, Vols I and II, Kyoto, 1990 (The Mathematical Society of Japan, Tokyo, 1991) 621–630. · Zbl 0759.55011
[29] Goodwillie, Calculus. II. Analytic functors, K-Theory 5 pp 295– (1991/92) · Zbl 0776.55008 · doi:10.1007/BF00535644
[30] DOI: 10.2140/gt.2003.7.645 · Zbl 1067.55006 · doi:10.2140/gt.2003.7.645
[31] Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 pp 137– (1958) · Zbl 0091.33201 · doi:10.24033/bsmf.1501
[32] Hirschowitz, Descente pour les \(n\) -champs (Descent for \(n\) -stacks)
[33] Joshua, Higher intersection theory on algebraic stacks. I, K-Theory 27 pp 133– (2002) · Zbl 1058.14004 · doi:10.1023/A:1021116524762
[34] Joshua, Higher intersection theory on algebraic stacks. II, K-Theory 27 pp 197– (2002) · Zbl 1073.14519 · doi:10.1023/A:1021648227488
[35] DOI: 10.1023/A:1022849624526 · Zbl 1026.14001 · doi:10.1023/A:1022849624526
[36] Joyal A. , ’Notes on quasi-categories’, Preprint, 2008, http://www.math.uchicago.edu/ may/IMA/JOYAL/JoyalDec08.pdf .
[37] Joyal A. , The theory of quasi-categories and its applications, Advanced Course on Simplicial Methods in Higher Categories 2 (Centre de Recerca Matemàtica, Barcelona, 2008).
[38] Joyal A. Tierney M. , ’Quasi-categories vs Segal spaces’, Categories in algebra, geometry and mathematical physics, Contemporary Mathematics 431 (American Mathematical Society, Providence, RI, 2007) 277–326. · Zbl 1138.55016 · doi:10.1090/conm/431/08278
[39] DOI: 10.1112/S0024611503014102 · Zbl 1041.55003 · doi:10.1112/S0024611503014102
[40] Lurie J. , ’Derived algebraic geometry XI. Descent theorems’, Preprint, http://www.math.harvard.edu/ lurie .
[41] Lurie J. , ’Derived algebraic geometry XII. Proper morphisms, completions, and the Grothendieck existence theorem’, Preprint, http://www.math.harvard.edu/ lurie .
[42] Lurie J. , Higher topos theory, Annals of Mathematics Studies 170 (Princeton University Press, Princeton, NJ, 2009). · Zbl 1175.18001
[43] Lurie J. , ’ \((\infty ,2)\) -categories and the Goodwillie calculus I’, Preprint from the web page of the author, October 2009.
[44] Lurie J. , ’Derived algebraic geometry V. Structured spaces’, Preprint from the web page of the author, February 2011.
[45] Lurie J. , ’Derived algebraic geometry VIII. Quasi-coherent sheaves and Tannaka duality theorems’, Preprint from the web page of the author, May 2011.
[46] Lurie J. , ’Higher algebra’, Preprint from the web page of the author, February 2012.
[47] Madsen I. , ’Algebraic \(K\) -theory and traces’, Current developments in mathematics, 1995 (Cambridge, MA) (International Press, Cambridge, MA, 1994) 191–321.
[48] DOI: 10.1016/0040-9383(93)90023-O · Zbl 0818.55001 · doi:10.1016/0040-9383(93)90023-O
[49] DOI: 10.4310/AJM.1997.v1.n2.a9 · Zbl 0906.19002 · doi:10.4310/AJM.1997.v1.n2.a9
[50] DOI: 10.4310/AJM.1997.v1.n3.a3 · Zbl 0906.19003 · doi:10.4310/AJM.1997.v1.n3.a3
[51] DOI: 10.4310/AJM.1998.v2.n1.a1 · Zbl 0923.19002 · doi:10.4310/AJM.1998.v2.n1.a1
[52] DOI: 10.4310/AJM.1998.v2.n3.a4 · Zbl 0937.19001 · doi:10.4310/AJM.1998.v2.n3.a4
[53] DOI: 10.4310/AJM.1999.v3.n3.a2 · Zbl 0979.19001 · doi:10.4310/AJM.1999.v3.n3.a2
[54] Neeman, \(K\) -theory for triangulated categories \(3\frac 12\) . A. A detailed proof of the theorem of homological functors, K-Theory 20 pp 97– (2000) · Zbl 0968.18007 · doi:10.1023/A:1007899920072
[55] Neeman, \(K\) -theory for triangulated categories \(3\frac 12\) . B. A detailed proof of the theorem of homological functors, K-Theory 20 pp 243– (2000) · Zbl 0968.18008 · doi:10.1023/A:1007860320980
[56] Neeman, \(K\) -theory for triangulated categories \(3\frac 34\) : a direct proof of the theorem of the heart, K-Theory 22 pp 1– (2001) · Zbl 0996.19003 · doi:10.1023/A:1011172502978
[57] Neeman, The \(K\) -theory of triangulated categories 1, 2, in: Handbook of K-theory pp 1011– (2005) · doi:10.1007/978-3-540-27855-9_20
[58] Priddy S. B. , ’On \(\Omega ^{\infty }S^{\infty }\) and the infinite symmetric group’, Algebraic topology, Proceedings of Symposia in Pure Mathematics, Vol. XXII, University of Wisconsin, Madison, WI, 1970 (American Mathematical Society, Providence, RI, 1971) 217–220.
[59] Quillen D. , ’Higher algebraic \(K\) -theory. I’, Algebraic \(K\) -theory, I: Higher \(K\) -theories, Proceeding Conference, Battelle Memorial Institute, Seattle, Washington, 1972. Lecturer Notes in Mathematics 341 (Springer, Berlin, 1973) 85–147.
[60] DOI: 10.1090/S0002-9947-00-02653-2 · Zbl 0961.18008 · doi:10.1090/S0002-9947-00-02653-2
[61] DOI: 10.1007/s00222-002-0231-1 · Zbl 1037.18007 · doi:10.1007/s00222-002-0231-1
[62] DOI: 10.1016/0040-9383(74)90022-6 · Zbl 0284.55016 · doi:10.1016/0040-9383(74)90022-6
[63] ’Théorie des topos’, Séminaire de Géométrie Algébrique du Bois Marie 1963–64 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat. Lecture Notes in Mathematics 269 (Springer, Berlin, 1963–64).
[64] Simpson C. , Homotopy theory of higher categories, New Mathematical Monographs 19 (Cambridge University Press, Cambridge, 2011). · doi:10.1017/CBO9780511978111
[65] Staffeldt, On fundamental theorems of algebraic \(K\) -theory, K-Theory 2 pp 511– (1989) · Zbl 0665.18010 · doi:10.1007/BF00533280
[66] DOI: 10.1215/00127094-2008-049 · Zbl 1166.18007 · doi:10.1215/00127094-2008-049
[67] Thomason, Higher algebraic K-theory of schemes and of derived categories III, in: The Grothendieck Festschrift pp 247– (1990) · doi:10.1007/978-0-8176-4576-2_10
[68] Toën, Théorèmes de Riemann-Roch pour les champs de Deligne–Mumford, K-Theory 18 pp 33– (1999) · Zbl 0946.14004 · doi:10.1023/A:1007791200714
[69] Toën, Vers une axiomatisation de la théorie des catégories supérieures, K-Theory 34 pp 233– (2005) · Zbl 1083.18003 · doi:10.1007/s10977-005-4556-6
[70] DOI: 10.1016/S0040-9383(03)00080-6 · doi:10.1016/S0040-9383(03)00080-6
[71] DOI: 10.1016/j.aim.2004.05.004 · Zbl 1120.14012 · doi:10.1016/j.aim.2004.05.004
[72] Toën B. Vezzosi G. , ’Homotopical algebraic geometry. II. Geometric stacks and applications’, Mem. Amer. Math. Soc. 193 (2008). · Zbl 1145.14003
[73] Waldhausen F. , ’Algebraic \(K\) -theory of spaces’, Algebraic and geometric topology (New Brunswick, NJ, 1983) (eds A. Ranicki , N. Levitt and F. Quinn ), Lecture Notes in Mathematics 1126 (Springer, Berlin, 1985) 318–419. · doi:10.1007/BFb0074449
[74] Waldhausen F. , Jahren B. Rognes J. , Spaces of PL manifolds and categories of simple maps, Annals of Mathematics Studies 186 (Princeton University Press, Princeton, 2013). · Zbl 1309.57001 · doi:10.1515/9781400846528
[75] Williams, On Grothendieck universes, Compos. Math. 21 pp 1– (1969) · Zbl 0175.00701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.