×

Gibbs-Jaynes entropy versus relative entropy. (English) Zbl 1291.82048

Summary: The maximum entropy formalism developed by Jaynes determines the relevant ensemble in nonequilibrium statistical mechanics by maximising the entropy functional subject to the constraints imposed by the available information. We present an alternative derivation of the relevant ensemble based on the Kullback-Leibler divergence from equilibrium. If the equilibrium ensemble is already known, then calculation of the relevant ensemble is considerably simplified. The constraints must be chosen with care in order to avoid contradictions between the two alternative derivations. The relative entropy functional measures how much a distribution departs from equilibrium. Therefore, it provides a distinct approach to the calculation of statistical ensembles that might be applicable to situations in which the formalism presented by Jaynes performs poorly (such as non-ergodic dynamical systems).

MSC:

82B35 Irreversible thermodynamics, including Onsager-Machlup theory
94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620-630 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[2] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423 (1948). 623-656 · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[3] Jaynes, E.T.: Information theory and statistical mechanics. In: Statistical Physics. W. A. Benjamin Inc, New York (1963) · Zbl 0084.43701
[4] Kawasaki, K., Gunton, J.D.: Theory of nonlinear transport processes: nonlinear shear viscosity and normal stress effects. Phys. Rev. A 8, 20482064 (1973) · doi:10.1103/PhysRevA.8.2048
[5] Grabert, H.: Projection Operator Techniques in Nonequilibrium Statistical Mechanics, pp. 29-32. Springer, Berlin (1982)
[6] Zubarev, D.: Statistical Mechanics of Nonequilibrium Processes, pp. 89-98. Wiley, Berlin (1996) · Zbl 0890.00008
[7] Gaveau, B., Schulman, L.S.: A general framework for non-equilibrium phenomena: the master equation and its formal consequences. Phys. Lett. A 229, 347-353 (1997) · Zbl 1072.82537 · doi:10.1016/S0375-9601(97)00185-0
[8] Qian, H.: Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations. Phys. Rev. E 63, 042103 (2001) · doi:10.1103/PhysRevE.63.042103
[9] Kawai, R., Parrondo, J.M.R., Van der Broeck, C.: Dissipation: the phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007) · doi:10.1103/PhysRevLett.98.080602
[10] Shell, M.S.: The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 129, 144108 (2008) · doi:10.1063/1.2992060
[11] Vaikuntanathan, S., Jarzynski, C.: Dissipation and lag in irreversible processes. Europhys. Lett. 87, 60005 (2009) · doi:10.1209/0295-5075/87/60005
[12] Horowitz, J., Jarzynski, C.: Illustrative example of the relationship between dissipation and relative entropy. Phys. Rev. E 79, 021106 (2009) · doi:10.1103/PhysRevE.79.021106
[13] Roldán, E., Parrondo, J.M.R.: Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 85, 031129 (2012) · doi:10.1103/PhysRevE.85.031129
[14] Crooks, G. E., and Sivak, D. A.: Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics. J. Stat. Mech.: Theory Exp. 2011, P06003 (2011) · Zbl 1154.94303
[15] Crooks, G. E.: On thermodynamic and microscopic reversibility. J. Stat. Mech.: Theory Exp. 2011, P07008 (2011)
[16] Sivak, D.A., Crooks, G.E.: Near equilibrium measurements of nonequilibrium free energy. Phys. Rev. Lett. 108, 150601 (2012) · doi:10.1103/PhysRevLett.108.150601
[17] Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79-86 (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.