×

A mathematical model for bone cell population dynamics of fracture healing considering the effect of energy dissipation. (English) Zbl 1496.74114

Marmo, Francesco (ed.) et al., Mathematical applications in continuum and structural mechanics. Cham: Springer. Adv. Struct. Mater. 127, 33-52 (2022).
Summary: The importance of mechanical modeling has been increasing in recent years for almost every area of biological sciences. The process of bone recovery is one of the issues to be addressed within a mechanical framework. In this study, a model for the bone healing process is proposed taking into account the bone cell population as well as the effect of energy dissipation. Numerical simulations for bone under a cyclic external loading are performed in order to show predicting capabilities of the model.
For the entire collection see [Zbl 1478.74002].

MSC:

74R10 Brittle fracture
74L15 Biomechanical solid mechanics
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
92C17 Cell movement (chemotaxis, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] An, B.; Zhao, X.; Arola, D.; Zhang, D., Fracture analysis for biological materials with an expanded cohesive zone model, J Biomech, 47, 10, 2244-2248 (2014)
[2] Andreaus, U.; Giorgio, I.; Madeo, A., Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids, Z Angew Math Phys, 66, 1, 209-237 (2015) · Zbl 1317.74064
[3] Baiotto, S.; Zidi, M., Theoretical and numerical study of a bone remodeling model: the effect of osteocyte cells distribution, Biomech Model Mechanobiol, 3, 1, 6-16 (2004) · Zbl 1377.74018
[4] Bednarczyk, E.; Lekszycki, T., A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset, Z Angew Math Phys, 67, 4, 94 (2016) · Zbl 1432.74150
[5] Bell, GI, Models for the specific adhesion of cells to cells, Science, 200, 4342, 618-627 (1978)
[6] Cricrì, G.; Perrella, M.; Sessa, S.; Valoroso, N., A novel fixture for measuring mode iii toughness of bonded assemblies, Eng Fract Mech, 138, 1-18 (2015)
[7] Del Vescovo D, Giorgio I (2014) Dynamic problems for metamaterials: Review of existing models and ideas for further research. Int J Eng Sci 80. doi:10.1016/j.ijengsci.2014.02.022 · Zbl 1423.74039
[8] Della Corte A, Giorgio I, Scerrato D (2019) A review of recent developments in mathematical modeling of bone remodeling. Proc Inst Mech Eng, Part H: J Eng Med, 0954411919857599
[9] dell’Isola, F.; Andreaus, U.; Placidi, L., At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. an underestimated and still topical contribution of gabrio piola, Math Mech Solids, 20, 887-928 (2014) · Zbl 1330.74006 · doi:10.1177/1081286513509811
[10] dell’Isola F, Corte A, Giorgio I (2016) Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math Mech Solids 22. doi:10.1177/1081286515616034 · Zbl 1371.74024
[11] Elbanna AE, Carlson JM (2013) Dynamics of polymer molecules with sacrificial bond and hidden length systems: towards a physically-based mesoscopic constitutive law. PloS one 8(4)
[12] George, D.; Allena, R.; Rémond, Y., A multiphysics stimulus for continuum mechanics bone remodeling, Math Mech Complex Syst, 6, 4, 307-319 (2018) · Zbl 1422.65295
[13] George, D.; Allena, R.; Rémond, Y., Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction, Continuum Mech Thermodyn, 31, 3, 725-740 (2019)
[14] Giorgio, I.; Andreaus, U.; Scerrato, D.; Dell’Isola, F., A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials, Biomech Model Mechanobiol, 15, 5, 1325-1343 (2016)
[15] Giorgio, I.; Andreaus, U.; Dell’Isola, F.; Lekszycki, T., Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts, Extreme Mech Lett, 13, 141-147 (2017)
[16] Giorgio I, Andreaus U, Lekszycki T, Corte AD (2017b) The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math Mech Solids 22(5):969-987 · Zbl 1371.74209
[17] Giorgio, I.; Andreaus, U.; Scerrato, D.; Braidotti, P., Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material, Math Mech Solids, 22, 9, 1790-1805 (2017) · Zbl 1391.74156
[18] Giorgio I, Rizzi N, Turco E (2017d) Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc A: Math, Phys Eng Sci 473(2207):20170,636 · Zbl 1404.74064
[19] Giorgio I, Dell’Isola F, Andreaus U, Alzahrani F, Hayat T, Lekszycki T (2019) On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech Model Mechanobiol, 1-25
[20] Greco, F.; Luciano, R.; Serino, G.; Vaiana, N., A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures, Ann Solid Struct Mech, 10, 1, 17-29 (2018)
[21] Hosseini, HS; Pahr, DH; Zysset, PK, Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains, J Mech Behav Biomed Mater, 15, 93-102 (2012)
[22] Klein-Nulend, J.; Bacabac, R.; Bakker, A., Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton, Eur Cells Mater, 24, 278-291 (2012)
[23] Kumar, C.; Jasiuk, I.; Dantzig, J., Dissipation energy as a stimulus for cortical bone adaptation, J Mech Mater Struct, 6, 1, 303-319 (2011)
[24] Lanyon, LE; Rubin, C., Static vs dynamic loads as an influence on bone remodelling, J Biomech, 17, 12, 897-905 (1984)
[25] Lekszycki, T.; dell’Isola, F., A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials, ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik, 92, 6, 426-444 (2012) · Zbl 1241.92010
[26] Lieou CK, Elbanna AE, Carlson JM (2013) Sacrificial bonds and hidden length in biomaterials: a kinetic constitutive description of strength and toughness in bone. Phys Rev E 88(1):012,703
[27] Lu, Y.; Lekszycki, T., Modeling of an initial stage of bone fracture healing, Continuum Mech Thermodyn, 27, 4-5, 851-859 (2015) · Zbl 1341.74124
[28] Lu, Y.; Lekszycki, T., A novel coupled system of non-local integro-differential equations modelling young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing, Z Angew Math Phys, 67, 5, 111 (2016) · Zbl 1432.74153
[29] Lu, Y.; Lekszycki, T., Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute, Math Mech Solids, 22, 10, 1997-2010 (2017) · Zbl 1386.74097
[30] Madeo, A.; George, D.; Lekszycki, T.; Nierenberger, M.; Rémond, Y., A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling, Comptes Rendus Mécanique, 340, 8, 575-589 (2012)
[31] Maes, C.; Coenegrachts, L.; Stockmans, I.; Daci, E.; Luttun, A.; Petryk, A.; Gopalakrishnan, R.; Moermans, K.; Smets, N.; Verfaillie, CM, Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair, J Clin Investig, 116, 5, 1230-1242 (2006)
[32] Marmo, F.; Masi, D.; Rosati, L., Thrust network analysis of masonry helical staircases, Int J Architect Herit, 12, 5, 828-848 (2018)
[33] Marmo F, Ruggieri N, Toraldo F, Rosati L (2018b) Historical study and static assessment of an innovative vaulting technique of the 19th century. Int J Architect Herit
[34] Marmo, F.; Toraldo, F.; Rosati, A.; Rosati, L., Numerical solution of smooth and rough contact problems, Meccanica, 53, 6, 1415-1440 (2018) · Zbl 1390.74144
[35] Marmo, F.; Demartino, C.; Candela, G.; Sulpizio, C.; Briseghella, B.; Spagnuolo, R.; Xiao, Y.; Vanzi, I.; Rosati, L., On the form of the musmeci’s bridge over the basento river, Eng Struct, 191, 658-673 (2019)
[36] Marmo, F.; Sessa, S.; Vaiana, N.; De Gregorio, D.; Rosati, L., Complete solutions of three-dimensional problems in transversely isotropic media, Continuum Mech Thermodyn, 32, 3, 775-802 (2020) · Zbl 1442.74049
[37] Mayr-Wohlfart, U.; Kessler, S.; Puhl, W.; Günther, K.; Knöchel, W., Bmp-4 of xenopus Laevis stimulates differentiation of human primary osteoblast-like cells, J Bone Joint Surgery British, 83, 1, 144-147 (2001)
[38] Paradiso, M.; Marmo, F.; Rosati, L., Consistent derivation of a beam model from the saint Venant’s solid model, Int J Solids Struct, 159, 90-110 (2019)
[39] Park, H.; Lakes, R., Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent, J Biomech, 19, 5, 385-397 (1986)
[40] Perricone V, Grun T, Marmo F, Langella C, Carnevali MDC (2020) Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. Bioinspirat Biomimet
[41] Rapisarda, AC; Della Corte, A.; Drobnicki, R.; Di Cosmo, F.; Rosa, L., A model for bone mechanics and remodeling including cell populations dynamics, Z Angew Math Phys, 70, 1, 9 (2019) · Zbl 1412.74049
[42] Ridha, H.; Thurner, PJ, Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests, J Mech Behav Biomed Mater, 27, 94-106 (2013)
[43] Ritchie RO, Buehler MJ, Hansma P (2009) Plasticity and toughness in bone. Phys Today
[44] Scala, I.; Spingarn, C.; Rémond, Y.; Madeo, A.; George, D., Mechanically-driven bone remodeling simulation: Application to lipus treated rat calvarial defects, Math Mech Solids, 22, 10, 1976-1988 (2017) · Zbl 1386.74098
[45] Serpieri, R.; Sessa, S.; Rosati, L., A mitc-based procedure for the numerical integration of a continuum elastic-plastic theory of through-the-thickness-jacketed shell structures, Compos Struct, 191, 209-220 (2018)
[46] Sessa, S.; Marmo, F.; Rosati, L., Effective use of seismic response envelopes for reinforced concrete structures, Earthquake Eng Struct Dyn, 44, 14, 2401-2423 (2015)
[47] Sessa, S.; Serpieri, R.; Rosati, L., A continuum theory of through-the-thickness jacketed shells for the elasto-plastic analysis of confined composite structures: Theory and numerical assessment, Compos B Eng, 113, 225-242 (2017)
[48] Sessa, S.; Marmo, F.; Rosati, L.; Leonetti, L.; Garcea, G.; Casciaro, R., Evaluation of the capacity surfaces of reinforced concrete sections: Eurocode versus a plasticity-based approach, Meccanica, 53, 6, 1493-1512 (2018)
[49] Sessa S, Marmo F, Vaiana N, Rosati L (2018b) A computational strategy for eurocode 8-compliant analyses of reinforced concrete structures by seismic envelopes. J Earthquake Eng, 1-34
[50] Sessa, S.; Marmo, F.; Vaiana, N.; De Gregorio, D.; Rosati, L., Strength hierarchy provisions for transverse confinement systems of shell structural elements, Compos B Eng, 163, 413-423 (2019)
[51] Sessa, S.; Marmo, F.; Vaiana, N.; Rosati, L., Probabilistic assessment of axial force-biaxial bending capacity domains of reinforced concrete sections, Meccanica, 54, 9, 1451-1469 (2019)
[52] Sheidaei A, Kazempour M, Hasanabadi A, Nosouhi F, Pithioux M, Baniassadi M, Rémond Y, George D (2019) Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method. Math Mech Solids, 1081286519828418 · Zbl 07273351
[53] Turner, CH, Three rules for bone adaptation to mechanical stimuli, Bone, 23, 5, 399-407 (1998)
[54] Vaiana, N.; Spizzuoco, M.; Serino, G., Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling, Eng Struct, 140, 498-514 (2017)
[55] Vaiana, N.; Sessa, S.; Marmo, F.; Rosati, L., Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method, Nonlinear Dyn, 98, 4, 2879-2901 (2019) · Zbl 1430.37096
[56] Vaiana, N.; Capuano, R.; Sessa, S.; Marmo, F.; Rosati, L., Nonlinear dynamic analysis of seismically base-isolated structures by a novel opensees hysteretic material model, Appl Sci, 11, 3, 900 (2021)
[57] Vaiana, N.; Sessa, S.; Rosati, L., A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena, Mech Syst Signal Process, 146, 106, 984 (2021)
[58] Webb, J.; Tricker, J., A review of fracture healing, Curr Orthop, 14, 6, 457-463 (2000)
[59] Wolff J (1892) Das Gesetz der Transformation der Knochen (The Law of Bone Remodeling, translated by P. Maquet and R. Furlong, 1986). Springer, Beglin
[60] Yang, J.; Lakes, RS, Experimental study of micropolar and couple stress elasticity in compact bone in bending, J Biomech, 15, 2, 91-98 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.