×

A model of finite strain viscoplasticity based on unified constitutive equations. Theoretical and computational considerations with applications to shells. (English) Zbl 1054.74537

Summary: A model of multiplicative finite strain viscoplasticity is developed. Hereby the elastic internal potential is assumed to depend quadratically on the elastic strain measure Ce by means of corresponding invariants. Hence, possible extension of the model to take anisotropy into account is straightforward. The evolution equation of the unified type due to S. R. Bodner and Y. Partom [ASME J. Appl. Mech. 42, 385–389 (1975)] are modified so as to fit into the framework adopted. The numerical treatment of the problem is fully developed. Specifically, the algorithmic aspects of the resulting non-additive structure are intensively discussed. Hereby, the treatment of the exponential map of a non-symmetric argument is of a central importance. Two consistent methods are developed. Various applications to shell problems are considered. Hereby, a shell theory with seven degrees of freedom together with a 4-node enhanced strain finite element formulation are used. A central feature of the shell formulation is its eligibility to the application of a three-dimensional constitutive law.

MSC:

74C20 Large-strain, rate-dependent theories of plasticity
74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argyris, J. H.; Doltsinis, J. St., On the large strain inelastic analysis in natural formulation. Part I. Quasistatic problems, Comput. Methods Appl. Mech. Engrg., 20, 213-252 (1979) · Zbl 0437.73065
[2] Basar, Y.; Itskov, M., Constitutive model and finite element formulation for large strain elasto-plastic analysis of shells, Comput. Mech., 23, 466-481 (1999) · Zbl 0943.74035
[3] Besseling, J. F., A thermodynamic approach to rheology, (Parkus, H.; Seddov, L. I., Irreversible Aspects of Continuum Mechanics (1968), Springer: Springer Berlin) · Zbl 0264.76005
[4] Bertram, A., An alternative approach to finite plasticity based on material isomorphisms, Int. J. Plasticity, 15, 353-374 (1999) · Zbl 1016.74009
[5] Betsch, P.; Stein, E., An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element, Commun. Numer. Methods Engrg., 11, 899-909 (1995) · Zbl 0833.73051
[6] Betsch, P.; Stein, E., Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains, Comput. Methods Appl. Mech. Engrg., 179, 215-246 (2000) · Zbl 0965.74060
[7] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. Numer. Methods Engrg., 40, 4427-4449 (1997) · Zbl 0892.73054
[8] Bodner, S. R.; Partom, Y., Constitutive equations for elastic-viscoplastic strain-hardening materials, ASME J. Appl. Mech., 42, 385-389 (1975)
[9] Brank, B.; Peric, D.; Damjanic, F., On large deformations of thin elasto-plastic shells: implementation of a finite rotation mode for quadrilateral shell element, Int. J. Numer. Methods Engrg., 40, 689-726 (1997) · Zbl 0892.73055
[10] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of non-linear shell formulations based on the enhanced assumed strain concept, Int. J. Numer. Methods Engrg., 37, 2551-2568 (1994) · Zbl 0808.73046
[11] Casey, J.; Naghdi, P. M., A remark on the use of the decomposition F=\(F}^e\textbf{F}^p\) in plasticity, ASME J. Appl. Mech., 47, 672-675 (1980) · Zbl 0472.73035
[12] Casey, J., Discussion of: invariance consideration in large strain elasto-plasticity, ASME J. Appl. Mech., 54, 247-248 (1987)
[13] Dvorkin, E. N.; Pantuso, D., Formulation of the MITCY shell element for finite strain elasto-plastic analysis, Comput. Methods Appl. Mech. Engrg., 125, 17-40 (1995)
[14] Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P., Modern Geometry - Methods and Applications, Part I (1984), Springer: Springer New York · Zbl 0529.53002
[15] Eberlein, R.; Wriggers, P., Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis, Comput. Methods Appl. Mech. Engrg., 171, 243-279 (1999) · Zbl 0957.74047
[16] Eterovic, A. L.; Bathe, K. J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, Int. J. Numer. Methods Engrg., 30, 1099-1115 (1990) · Zbl 0714.73035
[17] Haupt, P., On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behaviour, Int. J. Plasticity, 1, 279-293 (1985) · Zbl 0632.73042
[18] Ibrahimbegovic, A., Equivalent spatial and material descriptions of finite deformation elastoplasticity in principal axes, Int. J. Solids Struct., 31, 3027-3040 (1994) · Zbl 0944.74522
[19] Klinkel, S.; Wagner, W., A geometrical non-linear brick element based on the EAS-method, Int. J. Numer. Methods Engrg., 40, 4529-4545 (1997) · Zbl 0899.73539
[20] Kröner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rat. Mech. Anal., 4, 273-334 (1960) · Zbl 0090.17601
[21] Lee, E. H., Elastic-plastic deformation at finite strains, ASME J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[22] Mandel, J., Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, Int. J. Solids Struct., 9, 725-740 (1973) · Zbl 0255.73004
[23] Miehe, C., A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, Comput. Methods Appl. Mech. Engrg., 159, 223-260 (1998) · Zbl 0948.74009
[24] Miehe, C., A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains, Comput. Methods Appl. Mech. Engrg., 155, 193-234 (1998) · Zbl 0970.74043
[25] Miehe, C.; Stein, E., A canonical model of multiplicative elasto-plasticity: formulation and aspects of the numerical implementation, Eur. J. Mech. A, 11, 25-43 (1992)
[26] Moran, B.; Ortiz, M.; Shih, C. F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity, Int. J. Numer. Methods Engrg., 29, 483-514 (1990) · Zbl 0724.73221
[27] Parisch, H., A continuum-based shell theory for non-linear applications, Int. J. Numer. Methods Engrg., 38, 1855-1884 (1995) · Zbl 0826.73041
[28] Peric, D.; Owen, D. R.J.; Honnor, M. E., A model for finite strain elasto-plasticity based on logarithmic strains: computational issues, Comput. Methods Appl. Mech. Engrg., 94, 35-61 (1992) · Zbl 0747.73020
[29] Rössle, A.; Bischoff, M.; Wendland, W.; Ramm, E., On the mathematical foundation of the (1,1,2)-plate model, Int. J. Solids Struct., 36, 2143-2168 (1999) · Zbl 0962.74036
[30] Rouainia, M.; Peric, D., A computational model for elasto-viscoplastic solids at finite strain with reference to thin shell applications, Int. J. Numer. Methods Engrg., 42, 289-311 (1998) · Zbl 0907.73069
[31] Sansour, C., A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 194-216 (1995) · Zbl 0827.73044
[32] Sansour, C.; Kollmann, F. G., On theory and numerics of large viscoplastic deformation, Comput. Methods Appl. Mech. Engrg., 146, 351-369 (1997) · Zbl 0898.73024
[33] Sansour, C.; Kollmann, F. G., Large strain viscoplastic deformations of shells. Theory and finite element computation, Comput. Mech., 21, 512-525 (1998) · Zbl 0917.73043
[34] Sansour, C.; Kollmann, F. G., Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain, and enhanced strain elements, Comput. Mech., 24, 435-447 (2000) · Zbl 0959.74072
[35] Schieck, B.; Smolenski, W. M.; Stumpf, H., A shell finite element for large strain elastoplasticity with anisotropies - Part I: Shell theory and variational principle, Int. J. Solids Struct., 36, 5399-5424 (1999) · Zbl 0947.74068
[36] Schieck, B.; Smolenski, W. M.; Stumpf, H., A shell finite element for large strain elastoplasticity with anisotropies - Part II: Constitutive equations and numerical applications, Int. J. Solids Struct., 36, 5425-5452 (1999) · Zbl 0947.74069
[37] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112 (1992) · Zbl 0764.73089
[38] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73088
[39] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[40] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Engrg., 79, 173-202 (1990) · Zbl 0731.73031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.