×

Trend to equilibrium for the Becker-Döring equations : an analogue of Cercignani’s conjecture. (English) Zbl 1373.34021

Summary: We investigate the rate of convergence to equilibrium for subcritical solutions to the Becker-Döring equations with physically relevant coagulation and fragmentation coefficients and mild assumptions on the given initial data. Using a discrete version of the \(\log\)-Sobolev inequality with weights, we show that in the case where the coagulation coefficient grows linearly and the detailed balance coefficients are of typical form, one can obtain a linear functional inequality for the dissipation of the relative free energy. This results in showing Cercignani’s conjecture for the Becker-Döring equations and consequently in an exponential rate of convergence to equilibrium. We also show that for all other typical cases, one can obtain an “almost” Cercignani’s conjecture, which results in an algebraic rate of convergence to equilibrium.

MSC:

34A33 Ordinary lattice differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
82C40 Kinetic theory of gases in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] 10.1017/S0308210500026561 · Zbl 0656.58021 · doi:10.1017/S0308210500026561
[2] 10.1007/BF01013961 · Zbl 1217.82050 · doi:10.1007/BF01013961
[3] 10.1007/BF01211070 · Zbl 0594.58063 · doi:10.1007/BF01211070
[4] 10.4064/sm159-3-9 · Zbl 1072.60008 · doi:10.4064/sm159-3-9
[5] 10.1002/andp.19354160806 · Zbl 0013.14002 · doi:10.1002/andp.19354160806
[6] 10.1006/jfan.1998.3326 · Zbl 0924.46027 · doi:10.1006/jfan.1998.3326
[7] 10.1007/978-1-4684-2553-6_6 · doi:10.1007/978-1-4684-2553-6_6
[8] 10.1098/rspa.2005.1522 · Zbl 1370.34107 · doi:10.1098/rspa.2005.1522
[9] 10.1007/s10955-007-9373-2 · Zbl 1137.82011 · doi:10.1007/s10955-007-9373-2
[10] 10.1016/j.jde.2013.04.031 · Zbl 1285.34005 · doi:10.1016/j.jde.2013.04.031
[11] 10.1007/978-3-642-55771-2 · Zbl 1004.00015 · doi:10.1007/978-3-642-55771-2
[12] 10.1017/S0308210500027888 · Zbl 0760.34044 · doi:10.1017/S0308210500027888
[13] 10.1007/BF02186834 · Zbl 0838.60089 · doi:10.1007/BF02186834
[14] 10.1137/S0036139900378852 · Zbl 1025.45005 · doi:10.1137/S0036139900378852
[15] 10.1007/s000300050031 · Zbl 0892.34073 · doi:10.1007/s000300050031
[16] 10.3934/krm.2011.4.277 · Zbl 1217.82064 · doi:10.3934/krm.2011.4.277
[17] 10.1103/PhysRevE.78.051402 · doi:10.1103/PhysRevE.78.051402
[18] 10.1103/PhysRevE.83.051607 · doi:10.1103/PhysRevE.83.051607
[19] 10.1016/S0022-0396(03)00021-4 · Zbl 1109.82327 · doi:10.1016/S0022-0396(03)00021-4
[20] 10.1063/1.445731 · doi:10.1063/1.445731
[21] 10.1103/PhysRevE.66.061406 · doi:10.1103/PhysRevE.66.061406
[22] 10.1103/PhysRevE.71.021601 · doi:10.1103/PhysRevE.71.021601
[23] 10.1007/s00332-002-0535-8 · Zbl 1070.82023 · doi:10.1007/s00332-002-0535-8
[24] 10.1088/0953-8984/4/38/001 · doi:10.1088/0953-8984/4/38/001
[25] 10.1007/BF01218449 · Zbl 0683.60082 · doi:10.1007/BF01218449
[26] 10.1007/BF02770767 · Zbl 0945.82536 · doi:10.1007/BF02770767
[27] 10.1016/B978-0-444-85248-9.50008-X · doi:10.1016/B978-0-444-85248-9.50008-X
[28] 10.1016/0022-1236(85)90079-5 · Zbl 0578.46028 · doi:10.1016/0022-1236(85)90079-5
[29] 10.1002/3527604790 · doi:10.1002/3527604790
[30] 10.1023/A:1023099720145 · Zbl 0963.82036 · doi:10.1023/A:1023099720145
[31] 10.1007/s00220-002-0777-1 · Zbl 1041.82018 · doi:10.1007/s00220-002-0777-1
[32] 10.1016/0956-7151(91)90133-L · doi:10.1016/0956-7151(91)90133-L
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.