×

Optimal shape of axisymmetric solids using NURBS and automatic differentiation. (English) Zbl 1427.74143

Summary: Shape optimization of axisymmetric solids of revolution using a geometry description by NURBS surfaces, with a Sequential Quadratic Programming algorithm (SQP), Automatic Differentiation (AD) for the sensitivity analysis and the Finite Element Method (FEM) for the structural analysis is proposed in this work. As a result, structures with improved structural performance are obtained for static linear elastic structural problems, where the optimal structures present a continuous large thickness variations.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Timoshenko, S. P., History of Strength of Materials (1983), Dover Science
[2] Ramm, E.; Bletzinger, K.; Reitinger, R., Shape optimization of shell structures, IASS Bull. Int. Assoc. Shell Spatial Struct., 34, 112, 103-121 (1993)
[3] Bletzinger, K.-U.; Firl, M.; Linhard, J.; Wüchner, R., Optimal shapes of mechanically motivated surfaces, Comput. Methods Appl. Mech. Eng., 199, 5-8, 324-333 (2008) · Zbl 1227.74043
[4] Khosravi, P.; Ganesan, R.; Sedaghati, R., Optimization of thin-walled structures with geometric nonlinearity for maximum critical buckling load using optimality criteria, Thin-Walled Struct., 46, 1319-1328 (2008)
[5] Aubert, P.; Rousselet, B., Sensitivity computation and shape optimization for a non-linear arch model with limit-points instabilities, Int. J. Numer. Methods Eng., 42, 15-48 (1998) · Zbl 0927.74054
[6] Reitinger, R.; Ramm, E., Buckling and imperfection sensitivity in the optimization of shell structures, Thin-Walled Struct., 23, 1-4, 159-177 (1995)
[7] Mota Soares, C. A.; Barbosa, J. I.; Mota Soares, C. M., Axisymmetric thin shell structures sizing and shape optimization, Control Cybernet, 23, 3, 513-551 (1994), (shape design and optimization) · Zbl 0821.73043
[8] Rousselet, B.; Mehrez, S.; Myslinski, A.; Piekarski, J., Shell optimization, some remarks, (Herskovits, José, Advances in Structural Optimization. Advances in Structural Optimization, Solid Mech. Appl., 25 (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 381-412 · Zbl 0864.73047
[9] Özakça, M.; Hinton, E.; Rao, N., Shape optimization of axisymmetric structures with adaptive finite element procedures, Struct. Optim., 5, 256-264 (1993)
[10] Csonka, B.; Kozák, I., Shape optimization of axisymmetric structures using a high-order shear deformation theory, Struct. Optim., 9, 117-127 (1995)
[11] Espath, L.; Linn, R.; Awruch, A., Shape optimization of shell structures based on NURBS description using automatic differentiation, Int. J. Numer. Methods Eng., 88, 613-636 (2011) · Zbl 1242.74067
[12] Piegl, L. A.; Tiller, W., The Nurbs Book (1997), Springer · Zbl 0868.68106
[13] Griewank, A.; Walther, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (2008), SIAM: SIAM Philadelphia · Zbl 1159.65026
[15] Griewank, A., A mathematical view of automatic differentiation, Acta Numer., 22, 321-398 (2003) · Zbl 1047.65012
[17] Nocedal, J.; Wright, S. J., Numerical Optimization (1999), Springer · Zbl 0930.65067
[18] Babuska, I.; Aziz, A. K., On the angle condition in the finite element method, SIAM J. Numer. Anal., 13, 2, 214-226 (1961) · Zbl 0324.65046
[19] Ramm, E.; Wall, W., Shell structures - a sensitivity interrelation between physics and numerics, Int. J. Numer. Methods Eng., 60, 1, 381-427 (2004) · Zbl 1060.74572
[20] Isler, H., New shape for shells, Bull. Int. Assoc. Shell Struct., 8, 123-130 (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.