×

Symbolic dynamics and synchronization of coupled map networks with multiple delays. (English) Zbl 1241.93031

Summary: We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.

MSC:

93C55 Discrete-time control/observation systems
37B10 Symbolic dynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Smale, S., Bull. AMS, 73, 747 (1967)
[2] Lind, D.; Marcus, B., An Introduction to Symbolic Dynamics and Coding (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1106.37301
[3] Hao, B.-L.; Zheng, W.-M., Applied Symbolic Dynamics and Chaos (1998), World Scientific: World Scientific Singapore · Zbl 0914.58017
[4] Rudolph, D. J., Fundamentals of Measurable Dynamics, Ergodic Theory on Lebesgue Spaces (1990), Clarendon Press: Clarendon Press Oxford · Zbl 0718.28008
[5] Crutchfield, J. P.; Packard, N. H., Physica D, 7, 201 (1983)
[6] Giovannini, F.; Politi, A., Phys. Lett. A, 161, 332 (1992)
[7] Jaeger, L.; Kantz, H., J. Phys. A, 30, L567 (1997)
[8] Davidchack, R. L.; Lai, Y.-C.; Bollt, E. M.; Dhamala, M., Phys. Rev. E, 61, 1353 (2000)
[9] Kennel, M. B.; Buhl, M., Phys. Rev. Lett., 91, 084102 (2003)
[10] Buhl, M.; Kennel, M. B., Phys. Rev. E, 71, 046213 (2005)
[11] Bollt, E. M.; Stanford, T.; Lai, Y.-C.; Źyczkowski, K., Physica D, 154, 259 (2001)
[12] Atay, F. M.; Jalan, S.; Jost, J., Complexity, 15, 29 (2009)
[13] Jalan, S.; Jost, J.; Atay, F. M., Chaos, 16, 033124 (2006)
[14] Atay, F. M.; Jost, J.; Wende, A., Phys. Rev. Lett., 92, 144101 (2004)
[15] Atay, F. M.; Jost, J., Complexity, 10, 17 (2004)
[16] Lepri, S.; Giacomelli, G.; Politi, A.; Arecchi, F. T., Physica D, 70, 235 (1993)
[17] Bünner, M. J.; Kittel, A.; Parisi, J.; Fischer, I.; Elsäßer, W., Europhys. Lett., 42, 353 (1998)
[18] So, H. C., Signal Process., 82, 1471 (2002)
[19] Rad, A. B.; Lo, W. L.; Tsang, K. M., IEEE Trans. Control Systems Technol., 11, 957 (2003)
[20] Drakunov, S. V.; Perruquetti, W.; Richard, J. P.; Belkoura, L., Annu. Rev. Control, 30, 143 (2006)
[21] Yu, D.; Frasca, M.; Liu, F., Phys. Rev. E, 78, 046209 (2008)
[22] Yu, D.; Boccaletti, S., Phys. Rev. E, 80, 036203 (2009)
[23] Kaneko, K., Physica D, 41, 137 (1990)
[24] Pethel, S. D.; Corron, N. J.; Bollt, E., Phys. Rev. Lett., 96, 034105 (2006)
[25] Lu, W.; Atay, F. M.; Jost, J., SIAM J. Math. Anal., 39, 1231 (2007)
[26] Lu, W.; Atay, F. M.; Jost, J., Eur. Phys. J. B, 63, 399 (2008)
[27] Farmer, J. D.; Sidorowich, J. J., Phys. Rev. Lett., 59, 845 (1987)
[28] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0873.62085
[29] Bünner, M. J.; Ciofini, M.; Giaquinta, A.; Hegger, R.; Kantz, H.; Meucci, R.; Politi, A., Eur. Phys. J. D, 10, 165 (2000)
[30] Bauer, F.; Atay, F. M.; Jost, J., Nonlinearity, 22, 2333 (2009)
[31] Bauer, F.; Atay, F. M.; Jost, J., Europhys. Lett., 89, 20002 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.