×

Anti-synchronization of a class of coupled chaotic systems via linear feedback control. (English) Zbl 1097.94037

Summary: As a special case of generalized synchronization, chaos anti-synchronization can be characterized by the vanishing of the sum of relevant variables. In this paper, based on Lyapunov stability theorem for ordinary differential equations, several sufficient conditions for guaranteeing the existence of anti-synchronization in a class of coupled identical chaotic systems via linear feedback or adaptive linear feedback methods are derived. Chua’s circuit is presented as an example to demonstrate the effectiveness of the proposed approach by computer simulations.

MSC:

94C05 Analytic circuit theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
34D20 Stability of solutions to ordinary differential equations
37B25 Stability of topological dynamical systems
37N35 Dynamical systems in control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.81.4835 · doi:10.1103/PhysRevLett.81.4835
[2] DOI: 10.1109/31.7600 · Zbl 0663.94022 · doi:10.1109/31.7600
[3] Gong S. H., Opt. Lett. 26 pp 1406–
[4] DOI: 10.1103/PhysRevE.65.047202 · doi:10.1103/PhysRevE.65.047202
[5] DOI: 10.1103/PhysRevE.55.4029 · doi:10.1103/PhysRevE.55.4029
[6] DOI: 10.1016/j.physleta.2003.10.051 · Zbl 1098.37521 · doi:10.1016/j.physleta.2003.10.051
[7] DOI: 10.1103/PhysRevLett.76.1816 · doi:10.1103/PhysRevLett.76.1816
[8] DOI: 10.1016/j.chaos.2004.03.006 · Zbl 1129.93508 · doi:10.1016/j.chaos.2004.03.006
[9] DOI: 10.1016/j.physleta.2004.06.077 · Zbl 1209.93118 · doi:10.1016/j.physleta.2004.06.077
[10] DOI: 10.1016/j.physd.2004.02.005 · Zbl 1059.93118 · doi:10.1016/j.physd.2004.02.005
[11] DOI: 10.1016/j.chaos.2004.04.025 · Zbl 1068.94004 · doi:10.1016/j.chaos.2004.04.025
[12] DOI: 10.1016/j.physleta.2004.05.065 · Zbl 1134.37367 · doi:10.1016/j.physleta.2004.05.065
[13] DOI: 10.1103/PhysRevE.54.R2201 · doi:10.1103/PhysRevE.54.R2201
[14] DOI: 10.1103/PhysRevLett.72.1451 · doi:10.1103/PhysRevLett.72.1451
[15] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[16] DOI: 10.1016/S0167-2789(96)00301-6 · Zbl 0898.70015 · doi:10.1016/S0167-2789(96)00301-6
[17] DOI: 10.1103/PhysRevE.58.3067 · doi:10.1103/PhysRevE.58.3067
[18] DOI: 10.1103/PhysRevLett.85.2304 · doi:10.1103/PhysRevLett.85.2304
[19] DOI: 10.1103/PhysRevLett.76.1804 · doi:10.1103/PhysRevLett.76.1804
[20] DOI: 10.1103/PhysRevLett.78.4193 · doi:10.1103/PhysRevLett.78.4193
[21] DOI: 10.1103/PhysRevE.51.980 · doi:10.1103/PhysRevE.51.980
[22] DOI: 10.1103/PhysRevE.54.6708 · doi:10.1103/PhysRevE.54.6708
[23] DOI: 10.1142/S021812749400037X · Zbl 0870.58072 · doi:10.1142/S021812749400037X
[24] DOI: 10.1142/S0218127401002614 · doi:10.1142/S0218127401002614
[25] DOI: 10.1016/S0375-9601(03)00908-3 · Zbl 1026.37024 · doi:10.1016/S0375-9601(03)00908-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.