×

Existence and Ulam stability for two orders delay fractional differential equations. (English) Zbl 1441.34082

Summary: In this paper, we study the existence and uniqueness for nonlinear delay fractional differential equations with two orders of Caputo’s fractional derivative using the Banach fixed point theorem. Also, we establish the Ulam stability of solutions. Finally, we give an example to illustrate the results.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K27 Perturbations of functional-differential equations
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Abbas, S., Benchohra, M.: On the generalized Ulam-Hyers-Rassias stability for Darboux problem for partial fractional implicit differential equations. Appl. Math. E-Notes14, 20-28 (2014) · Zbl 1388.35203
[2] Abbas, S.: Existence of solutions to fractional order ordinary and delay differential equations and applications. Electronic Journal of Differential Equations2011(9), 1-11 (2011) · Zbl 1211.34096
[3] Abbas, S., Albarakati, W., Benchohra, M., Nieto, J.J.: Global convergence of successive approximations for partial Hadamard integral equations and inclusions. Comput. Math. Appl.,doi:10.1016/j.camwa.2016.04.030(2017)
[4] Abel, N.H.: Opl¨osning Af et Par Opgaver Ved Hjelp Af Bestemte Integraler. Magazin for Naturvidenskaberne, Aargang I, Bind 2, Christiania (1823)
[5] Abel, N.H.: Euvres Compl‘etes de Niels Henrik Abel. Nouvelle edition, Edited by Sylow, L., Lie, S., Gr¨ondahl & S¨on, Christiania (1881)
[6] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math.109, 973-1033 (2010) · Zbl 1198.26004
[7] Agarwal, R.P., O’Regan, D.: Existence theory for singular initial and boundary value problems: A fixed point approach. Appl. Anal.81, 391-434 (2002) · Zbl 1079.34010
[8] Ardjouni, A., Boulares, H., Djoudi, A.: Asymptotic stability in delay nonlinear fractional differential equations. Proyecciones Journal of Mathematics35(3), 263-275 (2016) · Zbl 1384.34085
[9] Atmania, R., Bouzitouna, S.: Existence and Ulam stability result for two-orders fractional differential equation. Acta Math. Univ. ComenianaeLXXXVIII(1), 1-12 (2019) · Zbl 1496.34010
[10] Belair, J., Mackey, M.C., Mahaffy, J.: Age-structured and two delay models for erythropoiesis. Mathematical Biosciences128, 317-346 (1995). · Zbl 0832.92005
[11] Benchohra, M., Lazreg, J.E.: Nonlinear fractional implicit differential equations. Commun. Appl. Anal.17, 471-482 (2013) · Zbl 1300.34014
[12] Benchohra, M., Lazreg, J.E.: On stability for nonlinear implicit fractional differential equations. Matematiche (Catania)LXX(II), 49-61 (2015) · Zbl 1339.34007
[13] Boulares, H., Ardjouni, A., Laskri, Y.: Existence and uniqueness of solutions to fractional order nonlinear neutral differential equations. Applied Mathematics E-Notes18, 25-33 (2018) · Zbl 1416.34057
[14] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophysical Journal of the Royal Astronomical Society13(5), 529-539 (1967)
[15] Caputo, M.: Elasticit‘ae Dissipazione, Zanichelli, Bologna (1969)
[16] Cermak, J., Hornicek, J., Kisela, T.: Stability regions for fractional differential systems with a time delay. Commun Nonlinear Sci Numer Simulat.31(1-3), 108-123 (2016) · Zbl 1467.34082
[17] Cho, Y.J., Rassias, Th.M., Saadati, R.: Stability of Functional Equations in Random Normed Spaces. Science-Business Media52, Springer (2013) · Zbl 1281.46001
[18] Chen, Y., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. In Proceedings of the IEEE Conference on Decision and Control (CDC’01), Orlando, FL, IEEE, New York,2001, 1421-1426 (2001)
[19] Colijn, C., Mackey, M.C.: Bifurcation and bistability in a model of hematopoietic regulation. SIAM Journal on Applied Dynamical Systems6, 378-394 (2007). · Zbl 1210.37033
[20] Crauste, F.: Delay model of hematopoietic stem cell dynamics: asymptotic stability and stability switch. Mathematical Modeling of Natural Phenomena4, 28-47 (2009) · Zbl 1186.34117
[21] Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn.48, 409-416 (2007) · Zbl 1185.34115
[22] Dhaigude, D.B., Sandeep, P.B.: Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations. Communications in Applied Analysis22(1), 121-134 (2017)
[23] Gavruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl.184, 431-436 (1994) · Zbl 0818.46043
[24] Hyers, D.H.: On the stability of the linear functional equation, Natl. Acad. Sci. U.S.A.27, 222-224 (1941) · Zbl 0061.26403
[25] Jalilian, Y., Jalilian, R.: Existence of solution for delay fractional differential equations. Mediterr. J. Math.10(4), 1731-1747 (2013) · Zbl 1283.34073
[26] Jun, K.W., Kim, H.M.: On the stability of an n-dimensional quadratic and additive functional equation. Math. Inequal. Appl.19(9), 854-858 (2006)
[27] Jung, S.M., Lee, K.S.: Hyers-Ulam stability of first order linear partial differential equations with constant coefficients. Math. Inequal. Appl.10, 261-266 (2007) · Zbl 1120.26011
[28] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies,204, Elsevier Science B.V., Amsterdam (2006) · Zbl 1092.45003
[29] Krol, K.: Asymptotic properties of fractional delay differential equations. Appl. Math. Comput.218(5), 1515-1532 (2011) · Zbl 1239.34095
[30] Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Analysis, Theory, Methods Applications69(10), 3337-3343 (2008) · Zbl 1162.34344
[31] Lazarevi, M.P., Spasi, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model.49, 475-481 (2009) · Zbl 1165.34408
[32] Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, 198, Acad. Press, San-Diego (1999) · Zbl 0924.34008
[33] Rassias, Th.M., Brzdek, J.: Functional Equations in Mathematical Analysis. Springer, New York (2012)
[34] Rassias, J.M.: Functional Equations, Difference Inequalities and Ulam Stability Notions (F.U.N.). Nova Science Publishers, Inc. New York (2010)
[35] Rassias, Th.M.: Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht (2003) · Zbl 1047.39001
[36] Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc.72, 297-300 (1978) · Zbl 0398.47040
[37] Niazi, A.U.K., Wei, J., Rehman, M.U., Jun, D.: Ulam-Hyers-Stability for nonlinear fractional neutral differential equations. Hacet. J. Math. Stat.48(1), 157-169 (2019) · Zbl 1471.34149
[38] Ross, B.: The development of fractional calculus 1695-1900. Historia Mathematica4, 75-89 (1977) · Zbl 0358.01008
[39] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gorden and Breach, Amsterdam, (1987) (Engl. Trans. from Russian, (1993)) · Zbl 0617.26004
[40] Smart, D.R.: Fixed Point Theorems, Cambridge Uni. Press., Cambridge (1980) · Zbl 0427.47036
[41] Smith, H.: An Introduction to Delay Differential Equations With Applications to The Life Sciences, Springer (2011) · Zbl 1227.34001
[42] Thanh, N.T., Trinh, H., Phat, V.N.: Stability analysis of fractional differential time-delay equations. IET Control Theory Applications11(7), 1006-1015 (2017)
[43] Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, Inc., New York (1968) · Zbl 0086.24101
[44] Ulam, S.M.: Problems in Modern Mathematics. John Wiley and Sons, New York, U.S.A. (1940) · Zbl 0137.24201
[45] Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electronic Journal of Qualitative Theory of Differential Equations2011(63), 1-10 (2011) · Zbl 1340.34034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.