×

High-order finite volume shallow water model on the cubed-sphere: 1D reconstruction scheme. (English) Zbl 1410.76237

Summary: A central-upwind finite-volume (CUFV) scheme for shallow-water model on a nonorthogonal equiangular cubed-sphere grid is developed, consequently extending the 1D reconstruction CUFV transport scheme developed by us. High-order spatial discretization based on weighted essentially non-oscillatory (WENO) is considered for this effort. The CUFV method combines the alluring features of classical upwind and central schemes. This approach is particularly useful for complex computational domain such as the cubed-sphere. The continuous flux-form spherical shallow water equations in nonorthogonal curvilinear coordinates are utilized. Fluxes along the element boundaries are approximated by a Kurganov-Noelle-Petrova scheme. A fourth-order strong stability preserving Runge-Kutta time stepping scheme for time integration is employed in the present work. The numerical scheme is evaluated with standard shallow water test suite, which accentuate accuracy and conservation properties. In addition, an efficient yet inexpensive bound preserving filter with an optional positivity filter is used to remove spurious oscillations and to achieve strictly positive definite numerical solution. To tackle the discontinuities that arise at the edges of the cubed-sphere grid, we utilize a high-order 1D interpolation procedure combining cubic and quadratic interpolations. The results with the high-order scheme is compared with the results for the same tests for various schemes available in literature. Since, the scheme presented here uses local-cell information, it is expected to be scalable to high number of processors count in a distributed node high-performance computer.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Software:

HE-E1GODF; chammp
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Taylor, M.; Tribbia, J.; Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92-108 (1997) · Zbl 0868.76072
[2] Giraldo, F. X., Lagrange-Galerkin methods on spherical geodesic grids: the shallow water equations, J. Comput. Phys., 160, 336-368 (2000) · Zbl 0977.76045
[3] Nair, R. D.; Thomas, S. J.; Loft, R. D., A discontinuous Galerkin global shallow water model, Mon. Wea. Rev., 133, 876-888 (2005)
[4] Kadalbajoo, M. K.; Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput., 217, 8, 3641-3716 (2010) · Zbl 1208.65105
[5] Rao, P., Numerical modeling of open channel flows using a multiple grid {ENO} scheme, Appl. Math. Comput., 161, 2, 599-610 (2005) · Zbl 1121.76362
[6] Rus, F.; Villatoro, F. R., Time-stepping in Petrov-Galerkin methods based on cubic b-splines for compactons, Appl. Math. Comput., 217, 6, 2788-2797 (2010) · Zbl 1202.65124
[7] Saker, S., Oscillation of parabolic neutral delay difference equations with several positive and negative coefficients, Appl. Math. Comput., 143, 1, 173-186 (2003) · Zbl 1028.39004
[8] Thuburn, J., A PV-based shallow-water model on a hexagonal-icosahedral grid, Mon. Wea. Rev., 125, 2328-2350 (1997)
[9] Majewski, D.; Liermann, D.; Prohl, P.; Ritter, B.; Buchhold, M.; Hanisch, T.; Paul, G.; Wergen, W.; Baumgardner, J., The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests, Mon. Wea. Rev., 130, 319-338 (2002)
[10] Tomita, H.; Tsugawa, M.; Satoh, M.; Goto, K., Shallow water model on a modified icosahedral geodesic grid using spring dynamics, J. Comput. Phys., 174, 579-613 (2001) · Zbl 1056.76058
[11] Peng, X.; Xiao, F.; Takahashi, K., Conservative constraint for a quasi-uniform overset grid on the sphere, Quart. J. Roy. Meteor. Soc., 132, 979-996 (2006)
[12] Sadourny, R., Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Mon. Wea. Rev., 100, 136-144 (1972)
[13] Rančić, M.; Purser, R.; Mesinger, F., A global shallow water model using an expanded spherical cube, Q. J. R. Meteorol. Soc., 122, 959-982 (1996)
[14] Putman, W. M.; Lin, S. J., A finite-volume dynamical core on the cubed-sphere grid, Numerical Modeling of Space Plasma Flows: ASTRONUM-2008. Numerical Modeling of Space Plasma Flows: ASTRONUM-2008, Astronomical Society of the Pacific Conference Series, 406, 268-275 (2009)
[15] Yang, C.; Cai, X., Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere, J. Comput. Phys., 230, 2523-2539 (2011) · Zbl 1316.76016
[16] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211-224 (1992) · Zbl 0756.76060
[17] Ullrich, P. A.; Jablonowski, C.; van Leer, B., High-order finite-volume methods for the shallow-water equations on the sphere, J. Comput. Phys., 229, 6104-6134 (2010) · Zbl 1425.76168
[18] Chen, C.; Xiao, F., Shallow water model on cubed-sphere by multi-moment finite volume method, J. Comput. Phys., 227, 5019-5044 (2008) · Zbl 1388.86003
[19] Escobar-Vargas, J.; Diamessis, P.; Giraldo, F., High-order discontinuous element-based schemes for the inviscid shallow water equations: Spectral multidomain penalty and discontinuous Galerkin methods, Appl. Math. Comput., 218, 9, 4825-4848 (2012) · Zbl 1426.76501
[20] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2nd ed. (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0923.76004
[21] Crnjaric-Zic, N.; Crnkovic, B., High order accurate semi-implicit {WENO} schemes for hyperbolic balance laws, Appl. Math. Comput., 217, 21, 8611-8629 (2011) · Zbl 1217.65171
[22] liang Qiao, D.; Zhang, P.; Wong, S.; Choi, K., Discontinuous Galerkin finite element scheme for a conserved higher-order traffic flow model by exploring Riemann solvers, Appl. Math. Comput., 244, 0, 567-576 (2014) · Zbl 1336.65168
[23] Nessyahu, H.; Tadmor, E., Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[24] Kurganov, A.; Petrova, G., A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math., 88, 683-729 (2001) · Zbl 0987.65090
[25] Kurganov, A.; Noelle, S.; Petrova, G., Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 707-740 (2000) · Zbl 0998.65091
[26] Levy, D.; Puppo, G.; Russo, G., Compact central weno schemes for multidimensional conservation laws, SIAM J. Sci. Comput., 22, 656-672 (2000) · Zbl 0967.65089
[27] Tang, L., Upwind and central {WENO} schemes, Appl. Math. Comput., 166, 2, 434-448 (2005) · Zbl 1073.65085
[28] Feng, H.; Huang, C.; Wang, R., An improved mapped weighted essentially non-oscillatory scheme, Appl. Math. Comput., 232, 0, 453-468 (2014) · Zbl 1410.65306
[29] Liu, X.; Osher, S.; Chen, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[30] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[31] Katta, K. K.; Nair, R. D.; Kumar, V., High-order finite volume transport on the cubed-sphere: comparison between 1D and 2D reconstruction schemes, Mon. Wea. Rev. (2014)
[32] Nair, R. D.; Katta, K. K., The central-upwind finite-volume method for atmospheric numerical modeling, Contemp. Math., 586, 277-285 (2013) · Zbl 1278.86007
[33] Ronchi, C.; Iacono, R.; Paolucci, P. S., The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 1, 93-114 (1996) · Zbl 0849.76049
[34] Adjerid, S.; Moore, P.; Teresco, J. D., Preface, Appl. Numerical Math., 52, 23, 129-132 (2005), doi: http://dx.doi.org/10.1016/j.apnum.2004.08.042. URL http://www.sciencedirect.com/science/article/pii/S0168927404001618
[35] Nair, R. D.; Thomas, S. J.; Loft, R. D., A discontinuous Galerkin transport scheme on the cubed-sphere, Mon. Wea. Rev., 133, 814-828 (2005)
[36] Bao, L.; Nair, R. D.; Tufo, H., A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere, J. Comput. Phys. (2013)
[37] Bryson, S.; Levy, D., On the total variation of high-order semi-discrete central schemes for conservation laws, J. Sci. Comput., 22, 163-175 (2006) · Zbl 1100.76040
[38] Zhang, Y.; Nair, R. D.N., A nonoscillatory discontinuous Galerkin transport scheme on the cubed sphere, Mon. Wea. Rev., 140, 9, 3106-3126 (2012)
[39] Shu, C.-W., Essentially non-oscillatory and weighed essentially non-oscillatory schemes for hyperbolic conservation laws, Lecture Notes in Mathematics, 1697, 325-432 (1997), Springer · Zbl 0927.65111
[40] Norman, M. R.; Nair, R. D.; Semazzi, F. H.M., A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics, J. Comput. Phys., 230, 1567-1584 (2011) · Zbl 1207.86005
[41] Gottlieb, S.; Shu, C. W.; Tadmor, E., Strong stability preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[42] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin for convection diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.