×

The spectra of reducible matrices over complete commutative idempotent semifields and their spectral lattices. (English) Zbl 1365.68418

Summary: Previous work has shown a relation between \(L\)-valued extensions of Formal Concept Analysis and the spectra of some matrices related to \(L\)-valued contexts. To clarify this relation, we investigated elsewhere the nature of the spectra of irreducible matrices over idempotent semifields in the framework of dioids, naturally ordered semirings, that encompass several of those extensions. This initial work already showed many differences with respect to their counterparts over incomplete idempotent semifields, in what concerns the definition of the spectrum and the eigenvectors. Considering special sets of eigenvectors also brought out complete lattices in the picture and we argue that such structure may be more important than standard eigenspace structure for matrices over completed idempotent semifields. In this paper, we complete that investigation in the sense that we consider the spectra of reducible matrices over completed idempotent semifields and dioids, giving, as a result, a constructive solution to the all-eigenvectors problem in this setting. This solution shows that the relation of complete lattices to eigenspaces is even tighter than suspected.

MSC:

68T30 Knowledge representation
15A18 Eigenvalues, singular values, and eigenvectors
15B33 Matrices over special rings (quaternions, finite fields, etc.)
16Y60 Semirings
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1201/9781420010572.ch25 · doi:10.1201/9781420010572.ch25
[2] DOI: 10.1016/S0024-3795(97)10057-X · Zbl 0941.15020 · doi:10.1016/S0024-3795(97)10057-X
[3] DOI: 10.1093/logcom/exr023 · Zbl 1261.03172 · doi:10.1093/logcom/exr023
[4] DOI: 10.1016/j.jcss.2009.05.002 · Zbl 1180.15026 · doi:10.1016/j.jcss.2009.05.002
[5] Brualdi R. A., Combinatorial Matrix Theory. Vol. 39 of Encyclopedia of Mathematics and its Applications (1991)
[6] DOI: 10.1137/080731232 · Zbl 1204.15019 · doi:10.1137/080731232
[7] DOI: 10.1017/CBO9780511809088 · doi:10.1017/CBO9780511809088
[8] DOI: 10.1007/978-3-642-59830-2 · doi:10.1007/978-3-642-59830-2
[9] DOI: 10.1016/0022-247X(67)90189-8 · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[10] DOI: 10.1007/978-94-015-9333-5 · doi:10.1007/978-94-015-9333-5
[11] Gondran M., EDF, Bulletin de la Direction des Etudes et Recherches, Serie C, Mathématiques Informatique 2 pp 25– (1977)
[12] DOI: 10.1016/j.fss.2007.01.016 · Zbl 1117.06010 · doi:10.1016/j.fss.2007.01.016
[13] Mehlhorn K., Algorithms and Data Structures. The Basic Toolbox (2008) · Zbl 1146.68069
[14] Schmidt G., Relations and Graphs. Discrete Mathematics for Computer Scientists (1993)
[15] DOI: 10.1137/0201010 · Zbl 0251.05107 · doi:10.1137/0201010
[16] DOI: 10.1016/j.ins.2010.04.014 · Zbl 1216.68285 · doi:10.1016/j.ins.2010.04.014
[17] DOI: 10.1016/j.fss.2014.09.022 · Zbl 1374.15047 · doi:10.1016/j.fss.2014.09.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.