×

Numerical aspect of large-scale electronic state calculation for flexible device material. (English) Zbl 1418.65048

Summary: Numerical aspects of large-scale electronic state calculation are explored on flexible organic device materials. Physical theory, numerical method and real application studies are discussed in the context of application-algorithm-architecture co-design. An application study was carried out for disordered organic thin film. Participation ratio, a measure for the spatial extension of electronic wavefunction is focused on, since it is crucial for device property. A data scientific research is reported for a classification problem of disordered organic polymers, in which participation ratio is used as descriptor. These application studies indicate the potential need of purpose-specific solvers for internal eigenpairs.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65Z05 Applications to the sciences
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ScaLAPACK: http://www.netlib.org/scalapack/
[2] ELPA: http://elpa.mpcdf.mpg.de/
[3] Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.J., Lederer, H.: The ELPA library—scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys. Condens. Matter 26, 213201 (2014) · doi:10.1088/0953-8984/26/21/213201
[4] EigenExa: http://www.r-ccs.riken.jp/labs/lpnctrt/en/projects/eigenexa/
[5] Imamura, T., Hirota, Y., Fukaya, T., Yamada, S., Machida, M.: EigenExa: high performance dense eigensolver, present and future. In: 8th International Workshop on Parallel Matrix Algorithms and Applications (PMAA14). Lugano, Switzerland (2014)
[6] Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K. and Scheffler, M.: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180 (2009) 2175-2196. https://aimsclub.fhi-berlin.mpg.de/ · Zbl 1197.81005
[7] Gelinck, G.H., Huitema, H.E., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J.B., Geuns, T.C., Beenhakkers, M., Giesbers, J.B., Huisman, B.H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J., de Leeuw, D.M.: Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106-110 (2004) · doi:10.1038/nmat1061
[8] Xu, X., Fukuda, K., Karki, A., Park, S., Kimura, H., Jinno, H., Watanabe, N., Yamamoto, S., Shimomura, S., Kitazawa, D., Yokota, T., Umezu, S., Nguyen, T.-Q., Someya, T.: Thermally stable, highly efficient, ultraflexible organic photovoltaics. PNAS 115, 4589-4594 (2018) · doi:10.1073/pnas.1801187115
[9] Sekitani, T., Someya, T.: Human-friendly organic integrated circuits. Mater. Today 14, 398-407 (2011) · doi:10.1016/S1369-7021(11)70184-5
[10] Bell, R.J., Dean, P.: Atomic vibrations in vitreous silica. Disc. Faraday Soc. 50, 55-61 (1970) · doi:10.1039/df9705000055
[11] Bell, R.J.: The dynamics of disordered lattices. Rep. Prog. Phys. 35, 1315 (1972) · doi:10.1088/0034-4885/35/3/306
[12] Thouless, D.J.: Electron in disordered systems and the theory of localization. Phys. Rep. 13, 93-142 (1974) · doi:10.1016/0370-1573(74)90029-5
[13] Wegner, F.: Inverse Participation Ratio in \[2 + \varepsilon\] ε Dimensions. Z. Physik B 36, 209-214 (1980) · doi:10.1007/BF01325284
[14] Fujiwara, T., Mitsui, T., Yamamoto, S.: Scaling properties of wave functions and transport coefficients in quasicrystals. Phys. Rev. B 53, R2910-R2913 (1996) · doi:10.1103/PhysRevB.53.R2910
[15] Martin, R.M.: Electronic Structure—Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004) · Zbl 1152.74303 · doi:10.1017/CBO9780511805769
[16] ELSES: http://www.elses.jp
[17] Hoshi, T., Yamamoto, S., Fujiwara, T., Sogabe, T., Zhang, S.-L.: An order-\[NN\] electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system. J. Phys. Condens. Matter 24, 165502 (2012) · doi:10.1088/0953-8984/24/16/165502
[18] Mulliken, R.S.: Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 23, 1833-1840 (1955) · doi:10.1063/1.1740588
[19] ELSES matrix library: http://www.elses.jp/matrix/
[20] Lee, D., Hoshi, T., Sogabe, T., Miyatake, Y., Zhang, S.-L.: Solution of the k-th eigenvalue problem in large-scale electronic structure calculations. J. Comp. Phys. 371, 618-632 (2018) · Zbl 1415.65088 · doi:10.1016/j.jcp.2018.06.002
[21] Hoshi, T., Yamazaki, K., Akiyama, Y.: Novel linear algebraic theory and one-hundred-million-atom electronic structure calculation on the K computer. JPS Conf. Proc. 1, 016004/1-4 (2014)
[22] Hoshi, T., Fujiwara, T.: Domain boundary formation in helical multishell gold nanowires. J. Phys.: Condens. Matter 21, 272201/1-7 (2009)
[23] Matrix Market: http://math.nist.gov/MatrixMarket/index.html
[24] Imachi, H., Hoshi, T.: Hybrid numerical solvers for massively parallel eigenvalue computation and their benchmark with electronic structure calculations. J. Inf. Process. 24, 164-172 (2016)
[25] EigenKernel: https://github.com/eigenkernel/
[26] Tanaka, K., Imachi, H., Fukumoto, T., Fukaya, T., Yamamoto, Y., Hoshi, T.: EigenKernel—a middleware for parallel generalized eigenvalue solvers to attain high scalability and usability. http://arxiv.org/abs/1806.00741
[27] Hoshi, T., Imachi, H., Kumahata, K., Terai, M., Miyamoto, K., Minami, K., Shoji F.: Extremely scalable algorithm for \[10^88\]-atom quantum material simulation on the full system of the K computer, Proceeding of 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), held in conjunction with SC16: The International Conference for High Performance Computing, Networking, Storage and Analysis Salt Lake City, Utah November, 13-18, 33-40 (2016)
[28] Bao, Z., Locklin, J.: Organic Field-Effect Transistors. CRC Press, Boca Raton (2007)
[29] Matsui, H., Mishchenko, A. S., Hasegawa, T.: Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors, Phys. Rev. Lett. 104, 056602/1-4 (2010)
[30] Matsui, H., Mishchenko A. S., Hasegawa, T.: Origin of shallow traps in organic transistors: dipole disorder at the semiconductor/insulator interface. In: The 68-th Annual Meeting of the Physical Society of Japan, 27pXP-4, Hiroshima University, 26-29 (2013)
[31] GROMACS: http://www.gromacs.org/ · Zbl 1114.82300
[32] van der Berendsen, H.J.C., Spoel, D., van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43-56 (1995) · doi:10.1016/0010-4655(95)00042-E
[33] Wang, J., Wolf, R.M., Caldwell, J.W., Kollmann, P.A., Case, D.A.: Development and Testing of a General Amber Force Field. Comput. Chem. 25, 1157-1174 (2004) · doi:10.1002/jcc.20035
[34] Terao, J., Wadahama, A., Matono, A., Tada, T., Watanabe, S., Seki, S., Fujihara, T., Tsuji, Y.: Design principle for increasing charge mobility of \[\pi\] π-conjugated polymers using regularly localized molecular orbitals. Nat. Commun. 4, 1691 (2013) · doi:10.1038/ncomms2707
[35] Hoshi, T., Imachi, H., Oohira, K., Abe, Y., Hukushima, K.: Principal component analysis with electronic wavefunctions for exploration of organic polymer device materials. In: International Meeting on High-Dimensional Data-Driven Science \[(\text{HD}^3\] HD3-2017), Kyoto, Japan, 10-13 (2017)
[36] Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159(1), 119-128 (2003) · Zbl 1037.65040 · doi:10.1016/S0377-0427(03)00565-X
[37] z-PARES: http://zpares.cs.tsukuba.ac.jp/
[38] Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79 115112/1-6 (2009)
[39] FEAST: http://www.feast-solver.org/
[40] Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput. 38(4), A2512-A2534 (2016) · Zbl 1348.65071 · doi:10.1137/15M1054493
[41] k-ep: https://github.com/lee-djl/k-ep
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.