×

On the predictability of long-range dependent series. (English) Zbl 1191.62160

Summary: This paper points out that the predictability analysis of conventional time series may in general be invalid for long-range dependent (LRD) series since the conventional mean-square error (MSE) may generally not exist for predicting LRD series. To make the MSE of LRD series prediction exist, we introduce a generalized MSE. With that, the proof of the predictability of LRD series is presented in a Hilbert space.

MSC:

62M20 Inference from stochastic processes and prediction
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
46N30 Applications of functional analysis in probability theory and statistics

Software:

longmemo
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] M. P. Clements and D. F. Hendry, Forecasting Economic Time Series, Cambridge University Press, Cambridge, UK, 1998. · Zbl 0941.62103 · doi:10.1017/CBO9780511599286
[2] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, Prentice-Hall, Englewood Cliffs, NJ, USA, 3rd edition, 1994. · Zbl 0858.62072
[3] W. A. Fuller, Introduction to Statistical Time Series, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1995.
[4] G. Udny Yule, “On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers,” Philosophical Transactions of the Royal Society A, vol. 226, no. 636-646, pp. 267-297, 1927. · JFM 53.0509.02
[5] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series, John Wiley & Sons, New York, NY, USA; The MIT Press, Cambridge, Mass, USA, 1964. · Zbl 0138.12302
[6] A. N. Kolmogorov, “Interpolation and extrapolation of stationary random sequences,” Izvestiya Akademii Nauk SSSR, vol. 5, pp. 3-14, 1941.
[7] L. A. Zadeh and J. R. Ragazzini, “An extension of Wiener’s theory of prediction,” Journal of Applied Physics, vol. 21, pp. 645-655, 1950.
[8] R. J. Bhansali, “Asymptotic properties of the Wiener-Kolmogorov predictor. I,” Journal of the Royal Statistical Society, vol. 36, no. 1, pp. 61-73, 1974. · Zbl 0284.62064
[9] E. A. Robinson, “A historical perspective of spectrum estimation,” Proceedings of the IEEE, vol. 70, no. 9, pp. 885-907, 1982.
[10] A. Papoulis, “A note on the predictability of band-limited processes,” Proceedings of the IEEE, vol. 73, no. 8, pp. 1332-1333, 1985.
[11] P. P. Vaidyanathan, “On predicting a band-limited signal based on past sample values,” Proceedings of the IEEE, vol. 75, no. 8, pp. 1125-1159, 1987.
[12] R. J. Bhansali, “Linear prediction by autoregressive model fitting in the time domain,” The Annals of Statistics, vol. 6, no. 1, pp. 224-231, 1978. · Zbl 0383.62061 · doi:10.1214/aos/1176344081
[13] R. J. Lyman, W. W. Edmonson, S. McCullough, and M. Rao, “The predictability of continuous-time, bandlimited processes,” IEEE Transactions on Signal Processing, vol. 48, no. 2, pp. 311-316, 2000.
[14] R. J. Lyman and W. W. Edmonson, “Linear prediction of bandlimited processes with flat spectral densities,” IEEE Transactions on Signal Processing, vol. 49, no. 7, pp. 1564-1569, 2001. · Zbl 1369.94369 · doi:10.1109/78.928709
[15] N. Dokuchaev, “The predictability of band-limited, high-frequency and mixed processes in the presence of ideal low-pass filters,” Journal of Physics A, vol. 41, no. 38, Article ID 382002, 7 pages, 2008. · Zbl 1147.60026 · doi:10.1088/1751-8113/41/38/382002
[16] R. Harrison, G. Kapetanios, and T. Yates, “Forecasting with measurement errors in dynamic models,” International Journal of Forecasting, vol. 21, no. 3, pp. 595-607, 2005. · doi:10.1016/j.ijforecast.2005.03.002
[17] S. van Bellegem and R. von Sachs, “Forecasting economic time series with unconditional time-varying variance,” International Journal of Forecasting, vol. 20, no. 4, pp. 611-627, 2004. · doi:10.1016/j.ijforecast.2003.10.002
[18] K. S. Man, “Linear prediction of temporal aggregates under model misspecification,” International Journal of Forecasting, vol. 20, no. 4, pp. 659-670, 2004. · doi:10.1016/j.ijforecast.2003.11.010
[19] M. P. Clements and D. F. Hendry, “Forecasting economic processes,” International Journal of Forecasting, vol. 14, no. 1, pp. 111-131, 1998.
[20] J. Beran, Statistics for Long-Memory Processes, vol. 61 of Monographs on Statistics and Applied Probability, Chapman and Hall, New York, NY, USA, 1994. · Zbl 0869.60045
[21] B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, Springer, New York, NY, USA, 2001.
[22] C. Cattani, M. Li, and C. Toma, “Short range phenomena: modeling, computational aspects and applications,” Mathematical Problems in Engineering, vol. 2008, Article ID 761081, 2 pages, 2008. · Zbl 1162.94301 · doi:10.1155/2008/761081
[23] M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264
[24] M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, p. 10, 2010. · Zbl 1191.90013
[25] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” to appear in IEEE Transactions on Parallel and Distributed Systems.
[26] M. Li and P. Bognat, “Forward for the special issue on traffic modeling, its computations and applications,” to appear in Telecommunication Systems. · Zbl 05803250 · doi:10.1007/s11235-009-9206-5
[27] M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584-2594, 2008. · doi:10.1016/j.physa.2008.01.026
[28] M. Li, “An approach to reliably identifying signs of DDOS flood attacks based on LRD traffic pattern recognition,” Computers and Security, vol. 23, no. 7, pp. 549-558, 2004. · doi:10.1016/j.cose.2004.04.005
[29] M. Li, “Change trend of averaged Hurst parameter of traffic under DDOS flood attacks,” Computers and Security, vol. 25, no. 3, pp. 213-220, 2006. · doi:10.1016/j.cose.2005.11.007
[30] J. Brodsky and C. M. Hurvich, “Multi-step forecasting for long-memory processes,” Journal of Forecasting, vol. 18, no. 1, pp. 59-75, 1999.
[31] V. A. Reisen and S. Lopes, “Some simulations and applications of forecasting long-memory time-series models,” Journal of Statistical Planning and Inference, vol. 80, no. 1-2, pp. 269-287, 1999. · Zbl 0937.62094 · doi:10.1016/S0378-3758(98)00254-7
[32] L. Bisaglia and S. Bordignon, “Mean square prediction error for long-memory processes,” Statistical Papers, vol. 43, no. 2, pp. 161-175, 2002. · Zbl 1017.62084 · doi:10.1007/s00362-002-0095-x
[33] R. J. Bhansali and P. S. Kokoszka, “Prediction of long-memory time series: a tutorial review,” in Processes with Long-Range Correlations, vol. 621 of Lecture Notes in Physics, pp. 3-21, Springer, Berlin, Germany, 2003. · Zbl 1039.62088
[34] K. S. Man, “Long memory time series and short term forecasts,” International Journal of Forecasting, vol. 19, no. 3, pp. 477-491, 2003. · doi:10.1016/S0169-2070(02)00060-2
[35] E. Bayraktar, H. V. Poor, and R. Rao, “Prediction and tracking of long-range-dependent sequences,” Systems & Control Letters, vol. 54, no. 11, pp. 1083-1090, 2005. · Zbl 1129.62411 · doi:10.1016/j.sysconle.2005.03.004
[36] K. S. Man and G. C. Tiao, “Aggregation effect and forecasting temporal aggregates of long memory processes,” International Journal of Forecasting, vol. 22, no. 2, pp. 267-281, 2006. · doi:10.1016/j.ijforecast.2005.05.007
[37] L. Bisaglia and M. Gerolimetto, “Forecasting long memory time series when occasional breaks occur,” Economics Letters, vol. 98, no. 3, pp. 253-258, 2008. · Zbl 1255.62294 · doi:10.1016/j.econlet.2007.05.001
[38] F. Godet, “Prediction of long memory processes on same-realisation,” Journal of Statistical Planning and Inference, vol. 140, no. 4, pp. 907-926, 2010. · Zbl 1179.62133 · doi:10.1016/j.jspi.2009.09.016
[39] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,” International Journal of Forecasting, vol. 22, no. 3, pp. 443-473, 2006. · doi:10.1016/j.ijforecast.2006.01.001
[40] S. I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer Series in Operations Research and Financial Engineering, Springer, New York, NY, USA, 2007. · Zbl 1152.62029
[41] D. Heath, S. Resnick, and G. Samorodnitsky, “Heavy tails and long range dependence in ON/OFF processes and associated fluid models,” Mathematics of Operations Research, vol. 23, no. 1, pp. 145-165, 1998. · Zbl 0981.60092 · doi:10.1287/moor.23.1.145
[42] V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226-244, 1995. · doi:10.1109/90.392383
[43] M. Li, “Fractional Gaussian noise and network traffic modeling,” in Proceedings of the 8th WSEAS International Conference on Applied Computer and Applied Computational Science, pp. 34-39, Hangzhou, China, May 2009.
[44] P. Abry, P. Borgnat, F. Ricciato, A. Scherrer, and D. Veitch, “Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail,” to appear in Telecommunication Systems. · Zbl 05803248 · doi:10.1007/s11235-009-9205-6
[45] R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhäuser, Boston, Mass, USA, 1998. · Zbl 0901.00010
[46] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Fractal Physiology, Oxford University Press, Oxford, UK, 1994.
[47] P. Doukhan, G. Oppenheim, and M. S. Taqqu, Eds., Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, Mass, USA, 2003. · Zbl 1005.00017
[48] M. Li, Teletraffic Modeling Relating to Generalized Cauchy Process: Empirical Study, VDM, Saarbrücken, Germany, 2009.
[49] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, Boston, Mass, USA, 1961. · Zbl 0121.00103
[50] N. Levinson, “The Wiener RMS (root mean square) error criterion in filter design and prediction,” Journal of Mathematics and Physics, vol. 25, pp. 261-278, 1947.
[51] N. Levinson, “A heuristic exposition of Wiener’s mathematical theory of prediction and filtering,” Journal of Mathematics and Physics, vol. 26, pp. 110-119, 1947. · Zbl 0036.21502
[52] S. S. Wolff, J. L. Gastwirth, and J. B. Thomas, “Linear optimum predictors,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 30-32, 1967. · Zbl 0149.14603 · doi:10.1109/TIT.1967.1053966
[53] R. J. Bhansali, “Asymptotic mean-square error of predicting more than one-step ahead using the regression method,” Journal of the Royal Statistical Society. Series C, vol. 23, pp. 35-42, 1974.
[54] J. Markhoul, “Linear prediction: a tutorial review,” Proceedings of the IEEE, vol. 63, no. 4, pp. 561-580, 1975.
[55] R. Kohn and C. F. Ansley, “Estimation, prediction, and interpolation for ARIMA models with missing data,” Journal of the American Statistical Association, vol. 81, no. 395, pp. 751-761, 1986. · Zbl 0607.62106 · doi:10.2307/2289007
[56] D. L. Zimmerman and N. Cressie, “Mean squared prediction error in the spatial linear model with estimated covariance parameters,” Annals of the Institute of Statistical Mathematics, vol. 44, no. 1, pp. 27-43, 1992. · Zbl 0760.62090 · doi:10.1007/BF00048668
[57] M. S. Peiris and B. J. C. Perera, “On prediction with fractionally differenced ARIMA models,” Journal of Time Series Analysis, vol. 9, no. 3, pp. 215-220, 1988. · Zbl 0668.62069 · doi:10.1111/j.1467-9892.1988.tb00465.x
[58] V. D. Kudritskii, “Optimal linear extrapolation algorithm for realization of a vector random sequence observed without errors,” Cybernetics and Systems Analysis, vol. 34, no. 2, pp. 185-189, 1998. · Zbl 0920.62115 · doi:10.1007/BF02742067
[59] L. Bisaglia and S. Bordignon, “Mean square prediction error for long-memory processes,” Statistical Papers, vol. 43, no. 2, pp. 161-175, 2002. · Zbl 1017.62084 · doi:10.1007/s00362-002-0095-x
[60] J. H. Kim, “Forecasting autoregressive time series with bias-corrected parameter estimators,” International Journal of Forecasting, vol. 19, no. 3, pp. 493-502, 2003. · doi:10.1016/S0169-2070(02)00062-6
[61] Y. Cai, “A forecasting procedure for nonlinear autoregressive time series models,” Journal of Forecasting, vol. 24, no. 5, pp. 335-351, 2005. · doi:10.1002/for.959
[62] J. L. Harvill and B. K. Ray, “A note on multi-step forecasting with functional coefficient autoregressive models,” International Journal of Forecasting, vol. 21, no. 4, pp. 717-727, 2005. · doi:10.1016/j.ijforecast.2005.04.012
[63] B. S. Atal, “The history of linear prediction,” IEEE Signal Processing Magazine, vol. 23, no. 2, pp. 154-161, 2006.
[64] D. W. Huang, “Levinson-type recursive algorithms for least-squares autoregression,” Journal of Time Series Analysis, vol. 11, no. 4, pp. 295-315, 1990. · Zbl 0716.62089 · doi:10.1111/j.1467-9892.1990.tb00059.x
[65] A. Schick and W. Wefelmeyer, “Prediction in moving average processes,” Journal of Statistical Planning and Inference, vol. 138, no. 3, pp. 694-707, 2008. · Zbl 1139.62044 · doi:10.1016/j.jspi.2007.01.007
[66] A. Jamalizadeh and N. Balakrishnan, “Prediction in a trivariate normal distribution via a linear combination of order statistics,” Statistics & Probability Letters, vol. 79, no. 21, pp. 2289-2296, 2009. · Zbl 1176.62008 · doi:10.1016/j.spl.2009.07.029
[67] L. Peng and Q. Yao, “Nonparametric regression under dependent errors with infinite variance,” Annals of the Institute of Statistical Mathematics, vol. 56, no. 1, pp. 73-86, 2004. · Zbl 1050.62047 · doi:10.1007/BF02530525
[68] P. Hall and Q. Yao, “Inference in ARCH and GARCH models with hevy-tailed errors,” Econometrica, vol. 71, no. 1, pp. 285-317, 2003. · Zbl 1136.62368 · doi:10.1111/1468-0262.00396
[69] S. I. Resnick, “Heavy tail modeling and teletraffic data: special invited paper,” The Annals of Statistics, vol. 25, no. 5, pp. 1805-1869, 1997. · Zbl 0942.62097 · doi:10.1214/aos/1069362376
[70] H. Michiel and K. Laevens, “Teletraffic engineering in a broad-band era,” Proceedings of the IEEE, vol. 85, no. 12, pp. 2007-2032, 1997.
[71] V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226-244, 1995. · doi:10.1109/90.392383
[72] A. Scherrer, N. Larrieu, P. Owezarski, P. Borgnat, and P. Abry, “Non-Gaussian and long memory statistical characterizations for internet traffic with anomalies,” IEEE Transactions on Dependable and Secure Computing, vol. 4, no. 1, pp. 56-70, 2007. · Zbl 05341093 · doi:10.1109/TDSC.2007.12
[73] D. H. Griffel, Applied Functional Analysis, Ellis Horwood Series in Mathematics and Its Application, Ellis Horwood, Chichester, UK, 1981. · Zbl 0461.46001
[74] C. K. Liu, Applied Functional Analysis, Defence Industry Press, Beijing, China, 1986.
[75] M. Li, “Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-a further study,” Applied Mathematical Modelling, vol. 31, no. 3, pp. 625-631, 2007. · Zbl 1197.94006 · doi:10.1016/j.apm.2005.11.029
[76] J. Beran, “Statistical methods for data with long-range dependence,” Statistical Science, vol. 7, no. 4, pp. 404-416, 1992.
[77] H. Künsch, J. Beran, and F. Hampel, “Contrasts under long-range correlations,” The Annals of Statistics, vol. 21, no. 2, pp. 943-964, 1993. · Zbl 0795.62077 · doi:10.1214/aos/1176349159
[78] J. Beran, “Fitting long-memory models by generalized linear regression,” Biometrika, vol. 80, no. 4, pp. 817-822, 1993. · Zbl 0800.62521 · doi:10.1093/biomet/80.4.817
[79] J. Beran, S. Ghosh, and D. Schell, “On least squares estimation for long-memory lattice processes,” Journal of Multivariate Analysis, vol. 100, no. 10, pp. 2178-2194, 2009. · Zbl 1175.62101 · doi:10.1016/j.jmva.2009.04.007
[80] M. Li and W. Zhao, “Variance bound of ACF estimation of one block of fGn with LRD,” Mathematical Problems in Engineering, vol. 2010, Article ID 560429, 14 pages, 2010. · Zbl 1191.94042 · doi:10.1155/2010/560429
[81] M. Li, W.-S. Chen, and L. Han, “Correlation matching method of the weak stationarity test of LRD traffic,” to appear in Telecommunication Systems. · Zbl 05803250 · doi:10.1007/s11235-009-9206-5
[82] M. Li and S. C. Lim, “Power spectrum of generalized Cauchy process,” to appear in Telecommunication Systems. · Zbl 05803253 · doi:10.1007/s11235-009-9209-2
[83] M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33-C36, 2006. · doi:10.1142/S0219477506003604
[84] G. Toma, “Specific differential equations for generating pulse sequences,” Mathematical Problems in Engineering, vol. 2010, Article ID 324818, 11 pages, 2010. · Zbl 1191.37052 · doi:10.1155/2010/324818
[85] Z.-H. Liu, “Chaotic time series analysis,” to appear in Mathematical Problems in Engineering.
[86] E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages, 2010. · Zbl 1191.35220 · doi:10.1155/2010/695208
[87] G. Toma and F. Doboga, “Vanishing waves on closed intervals and propagating short-range phenomena,” Mathematical Problems in Engineering, vol. 2008, Article ID 359481, 14 pages, 2008. · Zbl 1177.35022 · doi:10.1155/2008/359481
[88] E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008. · Zbl 1163.83319 · doi:10.1155/2008/410156
[89] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” to appear in Telecommunication Systems.
[90] C. Cattani, “Harmonic wavelet analysis of a localized fractal,” International Journal of Engineering and Interdisciplinary Mathematics, vol. 1, no. 1, pp. 35-44, 2009.
[91] C. Cattani, “Shannon wavelets theory,” Mathematical Problems in Engineering, vol. 2008, Article ID 164808, 24 pages, 2008. · Zbl 1162.42314 · doi:10.1155/2008/164808
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.