×

Approximate approximations: recent developments in the computation of high dimensional potentials. (English) Zbl 07167791

St. Petersbg. Math. J. 31, No. 2, 355-370 (2020) and Algebra Anal. 31, No. 2, 227-247 (2019).
Summary: The paper is devoted to a fast method of an arbitrary high order for approximating volume potentials that is successful also in the high dimensional case. The cubature formulas have been obtained by using the basis functions introduced in the theory of approximate approximations. As basis functions, we choose products of Gaussians and special polynomials, for which the action of integral operators can be written as one-dimensional integrals with a separable integrand, i.e., a product of functions depending only on one of the variables. Then a separated representation of the density, combined with a suitable quadrature rule, leads to a separable representation of the integral operator. Since only one-dimensional operations are used, the resulting method is efficient also in the high dimensional case. We show how this new approach can be applied to the cubature of polyharmonic potentials, to potentials of elliptic differential operators acting on densities on hyper-rectangular domains, and to parabolic problems.

MSC:

65D32 Numerical quadrature and cubature formulas
65-05 Experimental papers (numerical analysis) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] AS M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publ., New York, 1968. and · Zbl 0171.38503
[2] BM G. Beylkin and M. J. Mohlenkamp, Numerical-operator calculus in higher dimensions, Proc. Nat. Acad. Sci. USA 99 (2002), no. 16, 10246-10251. · Zbl 1008.65026
[3] BM2 \bysame , Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput. 26 (2005), no. 6, 2133-2159. · Zbl 1085.65045
[4] LCE L. C. Evans, Partial differential equations, 2nd ed., Grad. Stud. in Math., vol. 19, Amer. Math. Soc., Providence, RI, 2010. · Zbl 1194.35001
[5] GHB I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Hierarchical tensor-product approximation of the inverse and related operators in high-dimensional elliptic problems, Computing 74 (2005), no. 2, 131-157. · Zbl 1071.65032
[6] HK W. Hackbusch and B. N. Khoromskij, Tensor-product approximation to multi-dimensional integral operators and Green’s functions, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1233-1253. · Zbl 1171.65099
[7] gazzola F. Gazzola, H.-C. Grunau, and G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Math., vol. 1991, Springer-Verlag, Berlin, 2010. · Zbl 1239.35002
[8] He M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192. · JFM 67.0191.03
[9] Khor B. N. Khoromskij, Fast and accurate tensor approximation of a multivariate convolution with linear scaling in dimension, J. Comput. Appl. Math. 234 (2010), no. 11, 3122-3139. · Zbl 1197.65216
[10] LMS11 F. Lanzara, V. Maz\textprime ya, and G. Schmidt, On the fast computation of high dimensional volume potentials, Math. Comput. 80 (2011), no. 274, 887-904. · Zbl 1213.65046
[11] LMS13bis \bysame , Accurate cubature of volume potentials over high-dimensional half-spaces, Probl. Math. Anal. 55 (2011), 37-52; English transl., J. Math. Sci. (N.Y.) 173 (2011), 683-700. · Zbl 1223.65017
[12] LMS13 \bysame , Computation of volume potentials over bounded domains via approximate approximations, Probl. Math. Anal. 68 (2013), 157-171; English transl., J. Math. Sci. (N.Y.) 189 (2013), no. 3, 508-524. · Zbl 1273.65040
[13] LMS14 \bysame , Fast cubature of volume potentials over rectangular domains by approximate approximations, Appl. Comput. Harmon. Anal. 36 (2014), no. 1, 167-182. · Zbl 1294.65034
[14] LMS16 \bysame , Approximation of solutions to multidimensional parabolic equations by approximate approximations, Appl. Comput. Harmon. Anal. 41 (2016), no. 3, 749-767. · Zbl 1348.65061
[15] LMS17 \bysame , A fast solution method for time dependent multidimensional Schr\"odinger equations. Appl. Anal. 98 (2019), 408-429. · Zbl 1453.65054
[16] LMSnew \bysame , Accurate computation of the high-dimensional diffraction potential over hyper-rectangles, Bull. TICMI 22 (2018), 91-102. · Zbl 1495.65026
[17] LMS18 \bysame , Fast cubature of high dimensional biharmonic potential based on \rm “Approximate approximations,” Ann. Univ. Ferrara (2019); https://doi.org/10.1007/s11565-019-00328-z
[18] LMS15 F. Lanzara and G. Schmidt, On the computation of high-dimensional potentials of advection- diffusion operators, Mathematika 61 (2015), 309-327. · Zbl 1432.65179
[19] M91 V. Maz\textprime ya, A new approximation method and its applications to the calculation of volume potentials, boundary point method, 3. DFG-Kolloqium des DFG-Forschungsschwerpunktes Randelementmethoden, 1991.
[20] M94 \bysame , Approximate approximations, The Mathematics of Finite Elements and Applications.
(Uxbridge, 1993), Wiley, Chichester, 1994, pp. 77-104. (95g:65737)
[21] Mbook \bysame , Sobolev spaces with applications to elliptic partial differential equations, \(2\) nd, revised, augmented ed., Grundlehren Math. Wiss., Bd. 342, Springer, Heidelberg, 2011. · Zbl 1217.46002
[22] MS95 V. Maz\textprime ya and G. Schmidt, “Approximate Approximations\rm ” and the cubature of potentials, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) 6 (1995), no. 3, 161-184. · Zbl 0845.65008
[23] MSbook \bysame , Approximate approximations, Math. Surveys Monogr., vol. 141, Amer. Math. Soc., Providence, RI, 2007. · Zbl 1120.41013
[24] mitrea D. Mitrea, Distributions, partial differential equations, and harmonic analysis, Universitext, Springer, New York, 2013. · Zbl 1308.46002
[25] PBM A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integral and series. Special functions, Nauka, Mosckow, 1983. ; English transl., Gordon & Breach Sci. Publ./CRC Press, New York, 1986. · Zbl 0626.00033
[26] stein E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., vol. 30, Princeton Univ. Press, Princeton, 1970. · Zbl 0207.13501
[27] Mo H. Takahasi and M. Mori, Doubly exponential formulas for numerical integration, Publ. Res. Inst. Math. Sci. 9 (1974), 721-741. · Zbl 0293.65011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.